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1  | INTRODUC TION

Across a species' range, the persistence of a species is, seemingly 
simply, determined by two demographic parameters—birth and 
mortality rate. For the ecologists who wish to study them, however, 
gathering these data can be far from simple (Aizpurua et al., 2017; 
Brambilla & Ficetola, 2012). Some species have lifetimes longer than 
the career of the ecologist, some disperse or migrate (making them 
difficult to track), some have wide distributions (meaning data cannot 
easily be collected across the entire range) and others are cryptic or 

breed cryptically meaning demography is hard to observe. Accurate 
abundance data can likewise be elusive at the relevant resolutions 
for conservation purposes (often the extent of the entire range and 
the grain size of the individual home range; Dallas & Hastings, 2018). 
Obtaining or estimating this information is nonetheless critical to 
identify and possibly conserve the environments in which they can 
persist (Araujo & Williams, 2000; Rodrigues & Brooks, 2007).

Species distribution models (SDMs) estimate the probability of 
species' occurrence using the relationship between georeferenced 
records of species occurrence (and sometimes absence) and the 
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Abstract
1.	 Species distribution models (SDMs) estimate habitat suitability for species in 

geographic space. They are extensively used in conservation under the assumption 
that there is a positive relationship between habitat suitability and species success 
and stability.

2.	 Given the difficulties in obtaining demographic data across a species' range, this 
assumption is rarely tested. Here we provide a range-wide test of this relationship 
for the eastern subspecies of purple martin Progne subis subis.

3.	 We build a well-supported SDM for the breeding range of the purple martin, and 
pair it with an unparalleled demographic dataset of nest success and local and 
regional abundance data for the species to test the proposed link between habitat 
suitability and fecundity and demography.

4.	 We find a positive relationship between regional abundance and habitat suitability 
but no relationship between local abundance or fecundity and habitat suitability.

5.	 Our data suggest that local success is driven largely by biotic and stochastic fac-
tors and raise the possibility that purple martins are experiencing a time lag in 
their distribution. More broadly our results call for caution in how we interpret 
SDMs and do not support the assumption that areas of high habitat suitability are 
the best areas for species persistence.
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environment at those locations (Elith et al., 2011; Merow et al., 2013). 
Species distribution models are ubiquitous in conservation biology 
where they are used to identify and prioritize areas for protection 
(Guisan et al., 2013) often as part of a structured decision-making pro-
cess with software such as Marxan (Ball et  al.,  2009) and Zonation 
(Moilanen et al., 2009; e.g. Esselman & Allan, 2011; Guisan et al., 2013; 
Wilson et al., 2005) and, locally, to inform land managers on ‘habitat 
quality’ (e.g. Glenz et al., 2001). Compared with demography and abun-
dance, occurrence data are relatively easy to obtain, particularly when 
absence data are not required (Brambilla & Ficetola, 2012) and when 
considering charismatic and conspicuous species (Kobori et al., 2015). 
While conservation decision-making ideally requires data on where a 
species will ‘do best’, the output of SDMs is often assumed to provide a 
useful proxy for underlying demographic parameters and species per-
sistence (Araujo & Williams, 2000; Thuiller et al., 2014).

There both is a theoretical expectation of (Brown et  al.,  1995; 
Maguire,  1973), and some empirical support for, a positive correla-
tion between SDM-derived habitat suitability and species abundance. 
Gutiérrez et al. (2013) demonstrated a stronger link between abundance 
and SDM-derived habitat suitability than using methods aimed at deriv-
ing abundance directly from occupancy data (e.g. He & Gaston, 2000; 
Hwang & He, 2011; Solow & Smith, 2010; Yin et al., 2014), and SDMs 
produced from abundance (rather than presence/absence records) 
can improve explanatory power (Howard et al., 2014). Similarly, mul-
tiple studies have supported a positive link between niche centrality 
and abundance (Martínez-Gutiérrez et  al.,  2018; Martinez-Meyer 
et al., 2012; Osorio-Olvera et al., 2020), although this finding is not un-
controversial (Dallas et al., 2017; Santini et al., 2018). The generality of 
the abundance–suitability relationship is also contested, with a recent 
meta-analysis showing that the vast majority of studies (416/450) had 
a positive correlation coefficient (Weber et al., 2017) but Dallas and 
Hastings (2018) found mostly weak and insignificant correlations in 
their survey of 246 mammal and 158 tree species.

The robustness of the presumed relationship (Araujo & Williams, 
2000; Pulliam,  2000) between habitat suitability and demographic 
parameters such as fecundity, mortality and population growth rate 
has gained even less consistent support. Occurrence is not necessarily 
synonymous with persistence, habitat quality, demographic growth or 
stability (Bean et al., 2014). Individuals can occur in sink populations 
with negative population growth (Brawn & Robinson,  1996; Pulliam, 
1988), particularly where habitat quality has changed over time for dis-
persal-limited species (Greiser et al., 2020; Schurr et al., 2007; Thuiller 
et al., 2014). Species can be absent or rare in their optimum habitats 
due to competitive exclusion by other species which share their inclu-
sive niche (McGill, 2012). Individuals can be distributed in an ideal free 
distribution such that population growth is stable across the environ-
ment despite fluctuations in habitat quality (Quaintenne et al., 2011).

The suitability–demography relationship has been tested at local 
to regional scales with high-quality data on breeding success in at 
least three ornithological studies (Aizpurua et  al.,  2017; Brambilla 
& Ficetola,  2012; Pellissier et  al.,  2013). The authors found posi-
tive relationships between habitat suitability and fecundity in red-
backed shrikes Lanius collurio breeding in Northern Italy, although 

with a relatively low explanatory power (pseudo R2 = 0.32; Brambilla 
& Ficetola, 2012); in one of three wader species studied in one of 
the three years of a study (Pellissier et al., 2013); and in four or five 
of 19 passerine species in Catalonia depending on the spatial buf-
fer applied around nests (Aizpurua et al., 2017). Regional scale rela-
tionships with habitat suitability and plant functional traits related 
to growth and vigour were also weak and species-specific (Thuiller 
et al., 2010). However, none of these studies encompass the entire 
breeding range of their focal species, some of them rely on proxy val-
ues of fecundity (Aizpurua et al., 2017; Thuiller et al., 2010) and some 
were limited to fecundity measurements on a low number of individ-
uals [19 pairs of red-backed shrikes in (Brambilla & Ficetola, 2012), or 
<60 individual plants in (Thuiller et al., 2010)].

The same relationship has also gained weak support at the macro- 
scale, with no clear relationship between population trends and  
niche centrality in eight widely distributed threatened or endan-
gered birds in North America (Manthey et al., 2015). Furthermore, 
in a survey of 108 tree species, correlations between the estimated 
intrinsic rate of increase and habitat suitability were generally neg-
ative (Thuiller et  al.,  2014) despite a positive correlation between 
abundance and habitat suitability, again supporting the idea that 
species do not always do best where they are most abundant or 
where habitat suitability is highest (McGill, 2012).

Given the difficulties in obtaining direct measures of demographic 
parameters at anything approaching the range-wide scale, many in-
vestigations of the putative suitability/demography relationship have 
relied on estimations of surrogate properties such as tree growth 
(McGill,  2012) and plant functional traits (Thuiller et  al.,  2010) or 
have modelled the intrinsic rate of increase from census data (Thuiller 
et al., 2014). Other studies have obtained high-quality demographic 
data, but have been limited to a small subset of the range of the spe-
cies in question (Aizpurua et al., 2017; Bean et al., 2014; Brambilla & 
Ficetola, 2012; Pellissier et al., 2013). Even with relatively easily ob-
tained abundance data, there is often a mismatch between the spatial 
scale at which SDM habitat suitability varies and over which abun-
dance is measured (Manthey et al., 2015; Thuiller et al., 2014). In sum-
mary, due primarily to a paucity of adequate data for most species, 
there is considerable uncertainty about the relationship between de-
mographic success and SDM-estimated habitat suitability.

Purple martins Progne subis are migratory cavity-nesting insectivores 
with regionally declining breeding populations (Tautin et al., 2009). The 
eastern subspecies (P. subis subis) breeds colonially and has an unusu-
ally close relationship with humans in which its breeding is completely 
restricted to man-made structures, generally purpose built nest boxes 
(Brown & Tarof,  2017). The dependence of this species on humans, 
means that its breeding distribution may be limited not only by the 
usual mix of biotic and abiotic factors, but also by human behaviour, 
which results in potential challenges for modelling. However, this same 
human association makes the purple martin a conspicuous and easy to 
monitor species and have led to the creation of unusually rich citizen 
science data. Like many other North American bird species, the eBird 
database includes comprehensive occurrence records for the species 
in its breeding range (Sullivan et al., 2009) and the Breeding Bird Survey 
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(BBS) has produced maps showing the relative abundance of the spe-
cies throughout its range (Pardieck et  al.,  2019). Additionally, the 
Purple Martin Conservation Association (PMCA) has compiled ‘Project 
MartinWatch’ data in which purple martin ‘landlords’ report parame-
ters related to fecundity such as the number of nests per colony and 
the number of eggs, nestlings and fledglings per nest. At the time of our 
study the MartinWatch database encompassed 22 years and included 
close to 100,000 nest-level records, making it unparalleled as a range-
wide single-species demographic dataset, with two orders of magni-
tude more records available than in any of the previous tests of local 
fecundity and habitat suitability relationships (Aizpurua et  al.,  2017; 
Brambilla & Ficetola, 2012; Pellissier et al., 2013; Thuiller et al., 2010). 
Colony-level occupancy data (the proportion of nest boxes occupied), 
colony size and colony longevity data are also available through the 
PMCA’s ‘Purple Martin Survey’ which provides a finer scale comple-
ment to the relative abundance data from the BBS. The combination of 
these high-quality datasets presents a tantalizing opportunity to eval-
uate the relationship between occurrence, suitability, demography and 
abundance using direct measures of demographic parameters at the 
individual scale and abundance estimates at two spatial scales.

Here we bring together these three citizen science datasets of oc-
currence (eBird, N = 39,154), fecundity (MartinWatch, N = 87,597) and 
abundance (PMCA Survey, N = 2,304), together with carefully assem-
bled gridded environmental data, to assess the relationships between 
fecundity, abundance and habitat suitability from a species distribu-
tion model for the eastern subspecies of purple martin throughout its 
breeding range. We test the hypothesis that purple martins have higher 
nest-level fecundity and higher colony level and regional abundance in 
more suitable environments (as estimated by an SDM). The findings of 
this paper enable a critical examination of the empirical support for a 
common but little tested applied interpretation of SDMs.

2  | MATERIAL S AND METHODS

2.1 | Purple martin breeding range SDM

The eBird database (Cornell Lab of Ornithology, 2018) was filtered to 
include all breeding occurrence records of purple martins between 
1995 and 2016 to match the timeframe that the PMCA MartinWatch 
data were available. Previous studies have supported the use of eBird 
records as occurrence data for SDMs, finding their output comparable 
to models created using satellite tracking occurrence records (Coxen 
et al., 2017). To reduce sampling bias (Boakes et al., 2010), we thinned 
the records to separate them by at least 10 km2 (Fourcade et al., 2014). 
This resulted in a final occurrence dataset of 39,154 points.

Species distribution models are best informed by environmental 
variables selected using expert knowledge of the natural history of 
the species in question (Merow et al., 2014). Based on this knowledge, 
we included environmental layers depicting elevation, distance from 
open water, land cover, tree density, human population density, esti-
mated migration distance and minimum June temperature and Spring 
mean precipitation between 1994 and 2016 at a 1 km2 resolution to 

make our ‘long-term SDM’. Full details of the rationale behind variable 
selection are available in Supporting Information Methods.

To allow for the possibility that purple martin occurrence and/or 
fecundity were more determined by annual weather than by mean 
climate, we also made a set of 22 ‘annual SDMs’ in parallel with our 
long-term SDM to represent each year between 1994 and 2016 in 
which temperature and precipitation climatologies were exchanged 
for layers depicting annual conditions. Abundance of records in the 
eBird database increases through time, so we randomly sampled 559 
occurrence points for each year from the database to match the min-
imum number of records available in 1994.

We used MaxEnt version 3.4.1 to create our SDM (Phillips 
et al., 2006) and the r package ENMeval to tune our model by selecting 
the feature classes and regularization multiplier which minimized AICc 
(Muscarella et al., 2014) and ran five model crossvalidations (Table S6).

2.2 | SDM evaluation with independent 
location data

The PMCA MartinWatch dataset consists of citizen science reports col-
lected during the martin breeding season by martin ‘landlords’ who re-
cord egg, hatch and fledge dates and numbers for each nest. After quality 
filtering (details of which are available in the Supporting Information 
Methods), the dataset consisted of 87,597 nest records from 594 colony 
locations collected from 1994 to 2016. We used the locations of these 
colonies as an independent occurrence dataset with which to test the 
fit (using the test AUC statistic) and generality our SDM. All locations 
were used to test the long-term SDM, and we tested the annual SDMs 
with MartinWatch locations from the relevant years. We used pairwise 
distance sampling to correct AUC values for spatial sorting bias, and pre-
sent the calibrated AUC (AUCc) to avoid AUC inflation due to spatial 
autocorrelation of suitable sites (Hijmans, 2012; Koenig, 2002).

We used the PMCA Survey (with 2,304 records) as an additional 
source of both successful (housing with at least one purple martin 
nest with eggs) and unsuccessful (housing has not recorded any 
purple martin eggs) colony locations; information regarding colony 
longevity and distance between colonies and colony size (in terms of 
occupancy percentage and total number of filled nest boxes) in the 
year 2016. We used t-tests to test for a difference in the distance 
between successful and unsuccessful colonies from their nearest 
neighbouring colony, under the hypothesis that unsuccessful colo-
nies in suitable areas might have failed to attract birds due to low 
dispersal of martins from breeding locations.

2.3 | Fecundity and habitat suitability

We checked for relationships between summary fecundity metrics 
(number of eggs, hatchlings, fledglings, percentage of eggs which fledge 
and percentage of hatchlings which fledge) and habitat suitability at 
two levels of biological organization (colony level and nest level), two 
spatial scales (point locations and zip/postal code) and two temporal 
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scales (long-term SDM and annual SDMs). This resulted in a total of 
228 comparisons. Fecundity metrics were used as dependent variables 
in linear regressions with habitat suitability metrics. Full details of this 
procedure are available in Supporting Information Methods.

To compare within-colony variation with within-range variation, we 
used T-tests to compare the standard deviation in egg number, hatch 
number, fledge number, egg to fledge percentage and hatch to fledge 
percentage. We repeated this comparison on the annual scale to com-
pare annual within-site variation with within-range annual variation.

2.4 | Colony level abundance and habitat suitability

Colony abundance is expected to grow over time (Davis & 
Brown, 1999), so we used colony longevity (number of years that a 
colony has been established) data from the 2016 PMCA survey to test 
whether colonies tended to grow over time (in terms of their occu-
pancy percentage or number of nests) using linear regression. We took 
the residuals from these statistically significant regressions to tests for 
a relationship between the unexplained variation in colony level abun-
dance and habitat suitability using linear regression. We conducted 
this analysis using estimates of habitat suitability from both the long-
term SDM and the 2016 annual SDM.

2.5 | Regional level abundance and habitat 
suitability

We used data from the Breeding Bird Survey (BBS) summarizing the 
relative abundance of purple martins across their breeding range 
between 2011 and 2015 at a mean grid cell area of 390 km2 (max:  
479 km2, min: 0.4 km2, median: 46 km2, SD: 158 km2; data are scaled 
to show relative abundance per unit area; Pardieck et al., 2019). We 
extracted the mean, minimum, maximum and standard deviation in 
habitat suitability from the long-term SDM to each of these grid cells 
and created linear models to test the relationship between relative 
abundance and habitat suitability at the regional scale. As the data 
suggested a nonlinear response, we fitted a nonlinear logistic growth 
model of abundance as a function of the SDM-estimated suitability 
(Oliver, 1964) using the nls function in r. This approach assumes as-
ymptotic increase of abundance as suitability increases.

Significance of parametric tests was assumed at p < 0.05 through-
out. Expanded materials and methods are available as Supporting 
Information.

3  | RESULTS

3.1 | Species distribution model for the breeding 
range of the purple martin

We built a long-term SDM for the eastern breeding range of the 
purple martin (Figure 1), based on mean environmental conditions 

F I G U R E  1   (a) Distribution of eBird occurrence points used to 
train the species distribution model (SDM) after spatial filtering 
and quality control. Each hexagon covers a 10,000 km2 area. (b) 
Distribution of MartinWatch nest locations used to independently 
test the SDM after quality control. Each hexagon covers a 10,000 
km2 area. (c) Habitat suitability throughout the breeding range of 
the eastern subspecies of purple martin according to our long-term 
SDM using the logistic transformation. (d) Zoomed region of (c), 
showing location of eBird occurrence points as white circles, and 
MartinWatch test locations as black triangles. The colour of each 
filled hexagon in (a) and (b) indicates the number of occurrence 
points from the corresponding area. Solid black lines show the 
extent of the breeding distribution of P. subis subis according to the 
IUCN, where the species is thought to be present across most of 
the Eastern U.S. (with the exception of the Appalachian region) and 
the South and East of Canada
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between 1994 and 2016 including several climatic and non-climatic 
variables we developed to capture important aspects of purple 
martin ecology, and eBird occurrence data collected over the same 
period. We also built a set of annual SDMs based on weather and 
occurrences in each of the 22  years in the time period. All mod-
els achieved a plausible estimate of habitat suitability, with accept-
ably high AUC scores even after accounting for spatial sorting bias 
(Long-term SDM: AUCc average = 0.80, AUCc std = 0.0002; Annual 
SDM: AUCc = 0.72–0.81; Table S1), and predictions largely in agree-
ment with known natural history of the species and the IUCN dis-
tribution estimates (Figures  1 and 2). Further description on the 
geographic and environmental distribution is available in Supporting 
Information Results.

3.2 | SDM predictions of independent occurrence  
data

We used the locations of the PMCA MartinWatch nests as an inde-
pendent dataset to test the performance of our SDMs. The average 
AUCctest score of 0.799 for our long-term SDM almost equalled the 

internal training AUCc score (Table S1) and implies that the model 
generalized well and can predict actual breeding sites for purple mar-
tins in addition to opportunistic eBird observation locations. Annual 
SDMs were also highly predictive of occurrence of the MartinWatch 
sites matched by year with AUCctest scores ranging between 0.830 
and 0.890 (Table S1).

Examination of habitat characteristics of unsuccessful colony 
locations did not show any clear contrast between successful and 
unsuccessful locations (Figure 2), but unsuccessful colonies were sit-
uated further from a successful colony than were successful colonies 
(T149.74 = 3.81, p < 0.001, meansuccessful = 2.96 miles, meanunsuccessful =  
8.04 miles).

3.3 | Fecundity and habitat suitability

There was very weak evidence for a positive relationship between 
habitat suitability in the long-term or annual SDMs and any of the 
fecundity measurements from the PMCA MartinWatch dataset at 
either spatial scale considered (point or ZIP code) or at either level 
of biological organization (colony or nest). Only 10% (23/228) of the 

F I G U R E  2   Response of habitat suitability to environmental variables in the climatic species distribution model (SDM) estimated using 
the MaxEnt modelling framework. (a) June minimum temperature (b) tree cover (c) distance from open water (d) human population density 
(e) elevation (f) migration distance (g) mean daily spring precipitation. Percentages indicate the permutation importance of each variable 
from MaxEnt. Land cover classification has a predicted permutation importance of 0% and is omitted here. Blue lines show the estimated 
response curve. Blue shaded areas show the distribution of the environmental variables across the study domain at the background points. 
Red triangles show the environmental characteristics of sites from the Purple Martin Conservation Association (PMCA) survey which did not 
attract purple martins and black circles show environmental characteristics of sites which did attract purple martins



6  |    Journal of Animal Ecology WILLIAMS et al.

regressions resulted in statistically significant results, and those that 
did, explained an extremely small proportion of the variation (Min 
R2 = 0.0002, Max R2 = 0.03; Tables S2 and S3).

Within colony variation (measured by standard deviation) in 
egg number (T590 = 72.51, p < 0.001), hatch number (T590 = 86.87, 
p < 0.001), fledge number (T590 = 96.47, p < 0.001), egg to fledgling 
percentage (T562 = 76.43, p < 0.001) and hatchling to fledgling per-
centage (T65 = 4.55, p < 0.001) exceeded that of within-range varia-
tion across all years (1994–2016) using one sample T-tests. The same 
was true when comparing annual variation within sites with annual 
variation across the range (egg to fledgling percentage: T29.14 = 23.27, 
p < 0.001; hatchling to fledgling percentage: T31.04 = 1.80, p = 0.08) 
using 2 sample T-tests. Within colony egg number (0–13), hatchling 
number (0–13) and fledgling number (0–12) ranges were identical to 
range-wide variation.

3.4 | Colony level abundance and habitat suitability

Colonies which had been established for a longer period had a larger 
number of occupied nest boxes (F1,1,346 = 135.50, Estimate = 0.66, 
p  <  0.001, R2  =  0.09) and a higher occupancy percentage 
(F1,1,346  =  26.2, Estimate  =  0.37, p  <  0.001, R2  =  0.02; Figure  S1). 
Long-term habitat suitability did not explain the residual variation for 
occupancy percentage (F1,1,346 = 1.92, Estimate = 10.13, p = 0.166, 
R2 = 0.00; Figure S2a) and explained very little of the residual varia-
tion in the number of occupied nest boxes (and in the opposite direc-
tion to our hypothesis; F1,1,346 = 12.48, Estimate = −19.82, p < 0.001, 
R2 = 0.01; Figure S2b). The same was true of habitat suitability from the 
2016 model (Occupancy percentage: F1,1,346 = 2.26, Estimate = 5.40, 
p < 0.132, R2 = 0.00; Number occupied nest boxes: (F1,1,346 = 20.51, 
Estimate = −12.42, p < 0.001, R2 = 0.01; Figure S2c,d).

3.5 | Regional level abundance and habitat 
suitability

Linear regression of the mean regional habitat suitability from our 
long-term SDM and relative abundance from BBS data showed a 
positive relationship (F1,11,019 = 1717, Estimate = 13.11, p < 0.001 
R2  =  0.14). However, visual examination of this relationship sug-
gested a nonlinear relationship in which abundance was constrained 
below certain habitat suitability. This supported the fit of a logis-
tic growth model (Asymptote: Estimate = 7.02, SE = 0.13, T11018 =  
54.35, p < 0.001, Y-intercept: Estimate = −6.52, SE = 0.47, T11018 = 
−13.78, p  <  0.001, Growth rate: Estimate  =  18.93, SE  =  1.39, 
T11018 = 13.63, p < 0.001; Figure 3).

Minimum and maximum habitat suitability formed a similar pat-
tern with relative abundance, with noisy positive linear relation-
ships (Minimum: F1,11,019  =  1905, p  <  0.001 R2  =  0.15; Maximum: 
F1,11,019 = 2,644, p < 0.001 R2 = 0.19), nonlinear trends supportive of 
limited abundance at low habitat suitability and higher (but variable) 
abundance at high habitat suitability (Figure S3).

4  | DISCUSSION

We built a species distribution model depicting habitat suitability for 
the eastern subspecies of purple martin across its breeding range. 
The model was statistically well supported, and met or exceeded the 
current standards for SDM modelling in all areas (Araujo et al., 2019). 
While the model was predictive of purple martin occurrence from an 
independent dataset and regional relative abundance, there was no 
evidence that higher habitat suitability is reflected in fecundity or 
abundance at the nest or colony level. While our analysis is limited to 
a single species, our results provide a rigorous benchmark for impor-
tant questions surrounding the interpretation of SDMs.

We selected purple martins as our study species due to the un-
paralleled demographic datasets which have been gathered at ex-
tent of the breeding range and the resolution of the nest for this 
species. However, the same peculiar human-dependence which 
has facilitated the collection of these data poses a potential con-
founder in our study. If purple martins are constrained to breeding 
in man-made nest boxes, then their observed breeding distribution 
must be somehow affected by where humans position those boxes. 
One could go so far as to suggest that the modelled quantity is ac-
tually the habitat suitability for purple martin enthusiasts, rather 
than purple martins themselves. We do not believe this is the case 
in this example for several reasons: (a) Potentially due to our spa-
tial thinning procedure, there is no evident signal of human popu-
lation patterns in the output from our model. (b) Human population 
density (included as a way to capture some element of the purple 
martin's dependence on humans) was not the top predictor in our 
model, and the relationship was of a threshold type, where there 
was no expected increase in habitat suitability of purple martins 
with increasing human population density beyond a low threshold 
of around 200 people/km2. (c) The niche relationships found in the 

F I G U R E  3   Relative abundance of breeding purple martins is 
constrained in regions of low mean habitat suitability. Note the 
arc sin transformation on the y-axis. The colour scale of the points 
shows the number of data points in each hexagonal area. The solid 
yellow line shows the fit of a logistic growth model, with the grey 
shaded areas showing the 99% confidence intervals. The dashed 
yellow line shows a median quantile regression to illustrate a 
smoothed version of the unmodelled data
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study were all qualitatively supported by our hypotheses based on 
knowledge of the natural history of the species (Allen & Nice, 1952; 
Brown & Tarof, 2017; Root, 1988; Williams & DeLeon, 2020; Winkler 
et al., 2013). (d) The provision of martin housing does not guarantee 
its use—purple martin occurrence must therefore be limited by fac-
tors other than the availability of martin enthusiasts. Despite these 
positive indications, however, human population density are not the 
ideal data from which to estimate the complex relationship between 
martins and humans. A future refinement of the model may become 
possible should range-wide martin housing density data become 
available, or a more complex form of human population density data 
which takes account the socio-demographic and geographic factors 
likely found in martin landlords (Raleigh et al., 2019; Ray, 2012).

Despite access to an unparalleled species-specific demographic 
dataset, we found no evidence of higher fecundity in areas with 
higher habitat suitability for the purple martin. As a migrant spe-
cies, we cannot exclude that carry-over effects from migration, or 
even from previous breeding seasons, are contributing to fecun-
dity in addition to conditions experienced on the breeding grounds 
(Saino et al., 2017). It is also possible that climate change during the 
22-year timespan of this study may be altering the timing of peak 
food availability and impacting breeding success (Imlay et al., 2018). 
Either process may disrupt the hypothesized link between habitat 
quality and fecundity, but are challenging to account for without 
a large number of individual birds being tracked throughout their 
whole annual cycle. Despite our best efforts to minimize bias in our 
occurrence data, it is also possible that the lack of relationship is sim-
ply a modelling artefact (Loehle et al., 2015; Yackulic et al., 2013). 
Our finding does, however, reinforce previous studies that found no 
link between fecundity and SDM habitat suitability at large scales 
using proxy values to estimate demographic parameters (Manthey 
et al., 2015; McGill, 2012; Thuiller et al., 2010, 2014) and those find-
ing an absence of (Bean et al., 2014) or weak and species-specific 
effects at local and regional scales (Aizpurua et al., 2017; Brambilla & 
Ficetola, 2012; Pellissier et al., 2013).

It has previously been suggested that purple martin colony 
size may reflect an ideal free distribution (Davis & Brown, 1999), in 
which higher abundances of birds cluster in areas of higher habitat 
quality, leading to equal resource availability in all areas and uni-
form fecundity across the range (Fretwell & Lucas, 1970). If purple 
martins formed an ideal free distribution we would predict not only 
our observed lack of relationship between habitat suitability and fe-
cundity, but also a positive relationship between habitat suitability 
and abundance, where more martins breed in the areas of highest 
habitat quality. We did not find support for the latter prediction at 
the spatial scale at which the fecundity data were gathered (the col-
ony level). Neither colony size (the number of filled nest boxes in a 
colony) nor the percentage occupancy (the proportion of filled nest 
boxes within a colony) were related to habitat suitability in either 
annual or long-term models. These local data are not, however, the 
perfect data with which to test this hypothesis—both measures are 
affected by how many nest boxes a ‘landlord’ has chosen to provide 
independently of purple martin nesting preferences, and the data 

are incomplete in that we have no reliable measure of the abundance 
of purple martins in the area around our records.

In an example of the often complex scale relationships in macro-
ecology (Blackburn & Gaston, 2002), our analysis of the link between 
regional scale abundance of purple martins from the Breeding Bird 
Survey did, however, reveal evidence of a positive nonlinear relation-
ship between habitat suitability from our long-term SDM and relative 
abundance. This may indicate that purple martins are indeed forming 
an ideal free distribution, at least at this spatial scale. Martin regional 
abundance appears to be constrained to low levels in areas of low 
habitat suitability, but can take a on a wide range of values at higher 
habitat suitability. This echoes the finding of a ‘wedge shaped’ rela-
tionship between habitat suitability and abundance in 69 Australian 
rain forest vertebrate species (VanDerWal et al., 2009) and previous 
descriptions and theory from Hengeveld (1992) and Brown (1995).

Considering the lack of relationship between local fecundity and 
habitat suitability, and the mismatch in abundance and habitat suit-
ability relationships at two spatial scales, it is possible that the SDM 
is describing ‘good neighbourhoods’ which reflect the physiological 
requirements of purple martins and, as such, its range limits and re-
gional carrying capacity. Whereas, at the colony level, a ‘good site’ 
in terms of abundance and nest success, is determined more by bi-
otic and stochastic factors. This idea is supported by our finding that 
within-colony variability in numbers of eggs, hatchlings and fledg-
lings exceeded the variability across the entire range. In our ‘wedge 
shaped’ regional abundance relationship, therefore, low purple mar-
tin abundance at low predicted habitat suitability may reflect the 
distribution of a species at the edge of its abiotic niche, whereas the 
high variability in regional abundance at high habitat suitability may 
be caused by the set of complex biotic interactions at local scales.

Purple martins in ‘good neighbourhoods’ may be prevented 
from achieving high abundance and fecundity due to interspecific 
competition from species which may share their inclusive niche 
(Colwell & Fuentes, 1975; McGill, 2012; Wisheu, 1998) for example 
through competition for nesting sites or food. The lack of relation-
ship between local abundance or fecundity and habitat suitability 
may also occur due to a ‘bad sites’ occurring in ‘good neighbour-
hoods’ whereby unfavourable site-level factors limit abundance and 
nest success. Given the dependence of purple martins on human- 
provisioned housing, anthropogenic factors such as poor nest box 
quality can reduce breeding success (Raleigh et  al.,  2019) and may 
break down the link between regional habitat suitability and local 
demography. Alternatively, our discordant local and regional results 
could be caused by fine-scale habitat heterogeneity where colonies 
may be situated in very small patches (smaller than the 1 km2 reso-
lution of our SDM) of high-quality habitat surrounded by relatively 
low-quality habitat. These colonies may then achieve high fecundity 
even in regions of low habitat quality (Denoël & Lehmann, 2006). 
Future integration of fine-scale space-use data using, for example, 
GPS tags, may test whether the home ranges of birds support this idea.

Finally, the lack of local abundance relationship may be caused 
by a historical lag effect in purple martin distribution (Greiser 
et  al., 2020). Purple martins have a relatively high degree of natal 
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philopatry (Allen & Nice,  1952; Brown & Tarof,  2017; Hill,  2003), 
so even a small increase in colony fecundity could lead to sub-
stantially increased colony level abundance over a few years via 
positive feedback. In support of this idea, our own data showed a 
positive link between colony longevity and colony level abundance. 
Whereas landcover and climate may have changed over time, this 
philopatry and positive feedback means that birds may return to 
previous breeding sites, potentially at high abundance, even though 
habitat quality is no longer high, leading to a potential extinction 
debt (Cousins & Vanhoenacker,  2011; Frantz et  al.,  2019; Greiser 
et al., 2020; Sang et al., 2010). As unsuccessful colonies were more 
isolated from nearby colonies than were successful colonies, this 
long-distance migrant may be behaviourally ‘dispersal-limited’ in its 
selection of breeding sites (Paradis et al., 1998). New colonies may 
only be founded through a diffusive process when abundance at 
nearby colonies exceeds their capacity (Hill, 2003), meaning newly 
suitable colony locations may not be used.

Although purple martins may appear an unusual species due 
to their dependence on humans in the breeding season, the spe-
cies also has traits which may make our findings generalizable to 
other species. For example, where species meet the conditions 
of the ideal free distribution (principally an ability to both accu-
rately sample habitat quality at multiple locations to move freely 
between patches (Fretwell & Lucas, 1970)), or when there is rea-
son to believe that animal perceptions of habitat quality differ 
at local and regional scales (for example due to local biotic fac-
tors) (Johnson,  2005), we suggest that similar patterns may be 
expected.

How, then, should land managers use this model (or ones like it) 
for conservation purposes? Given the positive relationship between 
regional abundance and SDM-derived habitat quality, the SDM 
is a useful tool for larger scale habitat conservation prioritization. 
However, there is an inherent mismatch in definitions of breeding 
habitat quality at different scales, where at very local scales ani-
mals and their land managers must seek conditions to maximize in-
dividual fecundity, whereas at regional scales, land managers must 
seek conditions which maximize carrying capacity or abundance 
(Johnson,  2005). The lack of relationship between local fecundity 
and the SDM-derived measure of habitat quality limits its utility as a 
predictive tool at the local level, particularly where species may be 
following the ideal free distribution. For a land manager seeking pri-
ority locations for new purple martin housing, after regions capable 
of supporting high abundance are identified using the SDM, local 
potential ‘hotspots’ might be better identified through a ‘diffusive 
strategy’ based on locations of nearby colonies which have a high 
occupancy and fecundity rate (Hill, 2003).

In summary, we used data from three extensive citizen science ini-
tiatives to build an unparalleled demographic dataset across a species' 
range and found little evidence for a relationship between demogra-
phy and local abundance and SDM-derived habitat suitability. This is 
the first time these relationships have been tested across an entire 
species' range, while using direct measurements of local fecundity; 
and with access to a fecundity dataset 100 times larger than previous 

efforts. This suggests that we need to be careful in our interpretation 
of SDM output for research and decision-making. In particular, this 
analysis supports the use of SDMs to delineate species' range bound-
aries or to estimate regional abundance. However, SDMs parameter-
ized exclusively with abiotic factors (such as the one described here) 
without consideration of biotic factors including dispersal or interspe-
cific/intraspecific interactions may be limited in their ability to reflect 
biological realities beyond the edges of distributions and regional scale 
abundance patterns. Given the findings of this study and others (Bean 
et  al.,  2014; Dallas et  al.,  2017; McGill,  2012; Merow et  al.,  2014; 
Thuiller et al., 2010, 2014), there is no strong basis to presume cor-
relations between SDM modelled habitat suitability and local species 
fecundity or abundance.
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