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Abstract

Incubation is a key life history stage for birds, and incubation attentiveness can have significant fitness consequences for both
parents and offspring. Incubation is, however, a challenging phenomenon to observe and studies generally either measure some
proxy of the target behavior, or risk disturbing birds through direct observation. More recently, nest cameras have provided a non-
intrusive way to directly observe incubation, but analysis of these data is time-consuming. Here, we use the results of the first
deep learning model which automated analysis of nest camera video recordings from eight purple martin (Progne subis) nests
over the entire incubation period at a 1-s resolution. We mathematically define the initiation of incubation, characterize the
change in nest attentiveness during incubation, and analyze the factors determining nest attentiveness and on- and off-bout
duration during the incubation process. A random forest regression model identified the most important predictors of nest
attentiveness. Attentiveness decreased with increasing temperature, but the strength of this response increased above the pre-
sumed physiological zero egg temperature, below which egg development ceases. This implies that the purple martins are able to
adjust their incubation behavior in a complex, multiple-state manner to an extrinsic stimulus. Our study highlights the value of
high-resolution datasets created using artificial intelligence for the analysis of nest camera video recordings of animal behavior.

Significance statement

The use of artificial intelligence for image classification tasks is becoming commonplace in society. This technology is beginning
to be used to automate the analysis of video recordings of wildlife behavior. Here, we use the results of the first such classification
from nest camera video recordings of the purple martin (Progne subis) to determine the factors affecting incubation attentiveness
(the proportion of time that the adults spend in contact with eggs). Incubation attentiveness is important because it can affect hatch
rate and have carry-over effects both for the condition of the incubating adults and the quality of the resulting offspring. Our
analysis found that attentiveness was mainly affected by ambient temperature, with incubating adults reducing their efforts as
ambient temperature reaches the minimum threshold for egg development.
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proportion of the breeding period for a small part of each day
(Smith et al. 2015). In recent years, real-time nest video cam-
eras have become common place in behavioral studies of
breeding birds (Cox et al. 2012). Video cameras have the
advantage of decreased disturbance to birds compared with
direct observation. Viewing real-time recordings however is
extremely time-consuming and data are usually subsampled
(Davis and Holmes 2012), meaning that despite the technical
capacity to study the full breeding period, the vast majority of
studies are still forced to use some subset of the data.
Amininasab et al. (2016) provided a major advance to this
situation with their “BirdBox” software which partially auto-
mates viewing of nest box footage. The program provides the
most likely times of adult entry and exit points based on frame
by frame luminescence. However, the researcher must still
manually verify these likely events.

The use of deep learning convolutional neural networks as
tools to automate image recognition and classification is be-
coming commonplace in computing. These same techniques
are starting to be successfully applied to wildlife camera foot-
age and have proven capable of accurately identifying and
counting species given an adequately labeled training dataset
(Serrano et al. 2018; Tabak et al. 2018; Willi et al. 2018).
Automating the classification of incubation behavior removes
(or reduces) the need to subsample data and makes analysis of
the entire incubation period both feasible and scalable
(Williams et al. 2019). Deep learning has recently been used
for the first time with nest camera video recordings to auto-
mate the classification of incubation behavior in the purple
martin (Progne subis) (Williams et al. 2019). The eastern sub-
species of purple martin (Progne subis subis) is an ideal spe-
cies with which to test the utility of deep learning for incuba-
tion analysis. The species nests colonially, providing a rela-
tively large potential sample size all in the same geographic
location (Allen and Nice 1952). It also nests exclusively in
man-made nest boxes (Tarof and Brown 2013), making it easy
to standardize factors associated with the nest box and to in-
stall nest cameras. Purple martins are single-brooded female-
only incubators, with an incubation period of 15-17 days and
a typical clutch size of 3—6 eggs (Allen and Nice 1952).

Incubation behavior in birds is a key life history trait with
potentially high fitness consequences for offspring. Patterns of
parental attentiveness during incubation can determine hatch-
ing success (Deeming 2002), affect embryo developmental
rate (Martin and Schwabl 2008) and offspring phenotype
(Hepp et al. 2006), and they can alter the risk of nest predation
(Martin et al. 2000) and can shape the egg microbial environ-
ment (Cook et al. 2005). Incubation typically represents a
costly energetic investment for the incubating parent(s)
(Williams 1996) with attentiveness necessarily trading off
against other essential behaviors such as feeding (Deeming
2002). As such, incubation behavior has been studied relative-
ly intensely in birds (Deeming and Reynolds 2015) with

@ Springer

researchers using it as a model to test life history evolutionary
hypotheses (Martin 2004).

Incubation behavior is often defined by attentiveness and
on- and off-bout durations. Nest attentiveness (or constancy)
is defined as the percentage of time that eggs are in contact
with an adult (Skutch 1962), while on- and off-bouts are the
average durations of time that the incubating bird spends in
and out of contact with the eggs respectively (Deeming 2002).
Researchers have often strived to determine intrinsic and ex-
trinsic factors determining incubation behavior. Attentiveness
is known to vary by taxonomic group, with Passeriformes
averaging 75% (Deeming 2002). Within the passerines, there
is further variation between species where both parents incu-
bate and only females incubate, with shared incubators having
significantly higher overall nest attentiveness (Deeming
2002). Within a species, attentiveness has sometimes been
found to vary with clutch size, with larger clutches demanding
greater attentiveness (Blagosklonov 1977). Cooper and Voss
(2013) found that egg cooling rate increases with egg age,
leading to the expectation of increased attentiveness and on-
bout durations and/or decreased off-bout durations throughout
the incubation period, but empirical evidence in support of
this is so far sparse in the literature (Deeming 2002). Finally,
there is an expected relationship between incubation behavior
and ambient temperature, with birds increasing attentiveness
in response to ambient temperatures below egg physiological
zero (PZT—the temperature below which egg development is
suspended) and decreasing attentiveness above PZT (Conway
and Martin 2000). Theoretically, this increase in attentiveness
at low temperatures is characterized by shorter off-bouts as
incubators avoid exposing eggs to cold temperatures for long
durations (Conway and Martin 2000).

Despite decades of interest in incubation behavior,
however, the underlying datasets are often limited by
the difficulties in collecting data for the entire incuba-
tion period and directly observed datasets are generally
limited in scope both in terms of the number of indi-
viduals viewed and the resolution and coverage of the
data from each nest (Davis and Holmes 2012; Smith
et al. 2015). In response to this limitation, researchers
have turned to the use of in-nest devices which capture
some proxy of incubation attentiveness. Temperature
sensors have been used, for example, to infer incubation
in prairie chickens (Tympanuchus cupido) (Dallmann
et al. 2016) and blue tits (Cyanistes caeruleus)
(Amininasab et al. 2016). Pressure-sensitive devices
have been tested with the common eider (Somateria
mollissima) (Bottitta et al. 2002), and PIT tags have
been used to measure nest arrivals and departures in
Leach’s storm petrels (Oceanodroma leucorhoa)
(Zangmeister et al. 2009). While these proxy devices
are able to collect data more consistently throughout
the incubation period, they can never definitively
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demonstrate that incubation is actually taking place
(Smith et al. 2015).

Here, we use a deep learning model (Williams et al. 2019)
to estimate nest attentiveness and its corollaries, on- and off-
bout duration, from purple martin nest camera recordings
from the entire period starting with egg laying to incubation
and post incubation periods. We use change point analysis to
mathematically identify the initiation of incubation for each
nest. We then use a random forest modeling approach to test
whether purple martin incubation behavior is constant
throughout this period, and whether it is sensitive to extrinsic
factors such as ambient temperature and rainfall and/or intrin-
sic factors such as clutch size and the age of the incubating
female.

Methods
Field data collection

Purple martin artificial gourds (Troyer horizontal gourd
Conley II with tunnel entrance, Part THGC) were fitted with
in-nest cameras with a wide-angle lens (CCTV HD-TVI Mini
Security Camera 1080P 2.0MP 15 mm lens) at our field site at
Iroquois National Wildlife refuge in Western New York State
(43.111°N, 78.409°W). We modified the gourd cap by remov-
ing the opaque cover and replacing it with translucent plastic
to allow more light into the nest. Cameras were installed prior
to nest building. Cameras were set to record to a security DVR
(Alibi 4000 Series 16-Channel HD-TVI 3.0 Hybrid+) from 6
a.m. until 9 p.m. from nest initiation until all eggs hatched.
Data were not recorded overnight as there was insufficient
light in the nests to discern incubation behavior in the video.
Data were collected for eight purple martin nests (1 in 2017
and 7 in 2018) for an approximate total of 2280 h of footage.
Our sample size of eight nests was determined by a combina-
tion of nest box occupancy and nests for which we obtained
footage of the full incubation sequence. Video streams were
automatically split and stored as individual 33-min files.
Critical dates and information about each nest are available
in Table 1.

Our field site hosts a weather station approximately
100 m from our nest boxes which recorded ambient
temperature, precipitation, and wind-speed every hour
throughout our study period. Temperature sensors
(iButton DS1923 Humidichrons) were placed in the bot-
tom of each nest box such that they were situated un-
derneath the purple martins’ nests. We did not observe
any evidence of the purple martins attempting to re-
move or relocate sensors. Temperature was recorded ev-
ery hour, and the difference between ambient tempera-
ture and nest temperature was calculated.

Deep learning neural network

We trained a neural network to automatically classify each
video frame as “incubating” or “not incubating.” Full details
of this process are available in Williams et al. (2019), but
briefly, a tensor-flow model was trained on 12,144 manually
classified images from our dataset. For this classification, “in-
cubation” was defined as when one or more adult birds were
in the nest and at least one of them was sitting on the eggs.
Images were classified as “not incubation” when there was
either no adult bird in the nest, or if an adult was present,
but eggs were still exposed (Fig. 1). This definition of incu-
bation does, therefore, include some instances of male birds
sitting on nestlings although this cannot be technically classed
as incubation due to the absence of a brood patch in male
purple martins (Allen and Nice 1952). Each 33-min video clip
took approximately 4 min to analyze when 1 frame per second
was considered using only a single Nvidia Tesla P100 or V100
GPU node.

The resulting model produced a binary classification of
incubation behavior at a 1-s resolution. Internal model testing
showed the model classified 99.5% of still frames of valida-
tion images correctly. Modeled nest attentiveness was then
expressed as a percentage for each 33-min video clip. We
aggregated the 1-s data of our output to both negate the effect
of any single frame misclassifications and to reach a resolution
that is likely biologically meaningful for the hypotheses we
wished to test. We further tested model accuracy by compar-
ing modeled attentiveness percentages in 43 video clips with
attentiveness estimated from manual viewing. Modeled and
manually viewed attentiveness estimates were within 1% of
each other (Williams et al. 2019).

To determine on- and off-bout durations, raw data of model
output showing binary attentiveness values (incubating or not)
at one point per second were aggregated for each channel to
give the modal value per minute. This allowed us to estimate
bout durations to the nearest whole minute and to disregard
state changes of less than 30 s. These very short state changes
were sometimes produced by single frame model classifica-
tion errors and sometimes by behaviors such as when an in-
cubating female would briefly stand up from the eggs, turn
around, and sit back down—neither case would likely have a
significant effect on egg temperature. The same set of 43 val-
idation videos was manually classified for on- and off-bout
durations, using the same approach of taking modal values per
minute. Comparisons with this and the deep learning outputs
never differed by more than 2 min.

Defining the start of incubation
Purple martins are generally thought to start incubation after

laying their penultimate egg (Allen and Nice 1952; Tarof and
Brown 2013) and are thus predicted to have 1 day of hatch
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Table1 Timing, clutch size, and adult age classes for each nest. Start of
incubation is as defined by changepoint analysis (see “defining the start of
incubation”). SY denotes a second-year bird (i.e., in its first potential
breeding season) and ASY denotes an after-second-year bird (i.e., it has

potentially already bred at least once). Mean nest attentiveness refers to
the mean attentiveness between 6 a.m. and 9 p.m. each day from the start
of incubation until the first egg hatches. Bout duration is given in minutes

Nest ID Date of first Start of Date of first Days of Clutch Age class of Mean nest Mean on (off)
egg incubation hatch hatch size male/ female attentiveness bout duration
asynchrony
ChO1_ Jun 9 2018 Jun 11, 2018 Jun 27,2018 2 5 SY/ASY 69.11% 16.04 (8.06)
Ch%)gl_g May 20,2018 May 22,2018 Jun 8, 2018 1 6 ASY/ASY 72.74% 15.98 (7.06)
Ch%)?ll_8 Jun 13/18 Jun 16, 2018 Jul 2, 2018 0 4 SY/ASY 68.23% 13.57 (6.68)
Ch%)%l_g May 30, 2018 May 31,2018 Jun 19,2018 0 4 ASY/ASY 70.57% 14.57 (6.57)
Ch%)%l_g May 22,2018 May 25,2018 Jun 9, 2018 1 5 ASY/ASY 76.44% 14.30 (5.70)
Ch%)%l_8 May 23,2018 May 27,2018 Jun 12,2018 1 6 ASY/ASY 73.61% 14.69 (6.31)
Chzlgl_8 May 26,2018 May 20,2018 Jun 14,2018 2 6 ASY/SY 78.77% 20.98 (5.43)
Ch%)gl_g Jun 17,2017 Jun 18, 2017 Jul 6, 2017 1 4 SY/SY 69.67% 24.56 (10.31)
2017

asynchrony where one egg hatches 1 day later than the rest of
the clutch. As our nests had more variation in hatch asynchro-
ny (0-2 days, Table 1) than expected by this rule, we decided
to define the start of incubation empirically by using change
point analysis to find the time at which attentiveness increases
from a pre-incubation baseline to true-incubation for each
nest. We limited the video data for each channel to the day
the penultimate egg was laid, plus the 3 days prior and the
3 days after. Using the R package “change point” (Killick et al.
2016), we found change points in the mean and variance of
nest attentiveness using the “At-most-one-change” (AMOC)
method for each nest (Hinkley 1970). For one nest
(ch04 2018), this method predicted the start of incubation
3.63 days after the penultimate egg was laid and would have
resulted in an implausibly short incubation period of 13 days.
For this nest, we therefore relaxed our criteria to allow more
than one change point to be predicted by using the “Pruned-
exact-linear-time” (PELT) method (Killick et al. 2012). To
increase our power to illustrate the characteristics of the start
of incubation, we made one final change point analysis
(AMOC method) with the mean attentiveness values from

all nests included in a single analysis, with the data for each
channel aligned on the penultimate egg laying day. As a check
on the video data, we also did a similar AMOC change point
analysis on the temperature difference data (i.e., nest temper-
ature as determined by sensors minus the ambient tempera-
ture) from seven nests. Similar to the video data, we aligned
the temperature data from the seven nests on the day of the
penultimate egg.

Random forest modeling of factors determining
incubation patterns

We used a random forest regression modeling approach to
determine factors affecting incubation attentiveness using the
randomForest R package (Liaw and Wiener 2002). The full
dataset was subsetted to include only the period of “true”
incubation (defined here as the start of incubation found in
the change point analysis above, until the day that the first
egg hatched) and was randomly split into training and testing
sets (80:20). Candidate predictors included the day of incuba-
tion (where day 0 is the first day of incubation and incubation

Fig. 1 Typical images from the deep learning training set, illustrating incubation (a) and the two main cases of “non-incubation” (b, ¢)
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ends when the first egg hatched); the time of day (between 6
a.m. and 9 p.m.); ambient temperature (°C), rainfall (mm),
wind speed (km'h), ordinal date, clutch size, adult age classes
(After-second-year (ASY) or Second-year (SY)), nest orienta-
tion (expressed as decimal degrees from North), and nest iden-
tity. We used AIC to select the most parsimonious set of pre-
dictors by starting with a full model and dropping the lowest-
performing variable while calculating AIC at each step. The
model with the lowest AIC was then tuned by finding the
value of “mtry” (the number of variables selected as candi-
dates at each split) and the number of trees which minimized
the mean squared error on the training set. Errors on training
and test data were examined; out-of-bag and validation per-
formance was compared; predictor variables were ranked by
importance; biological relationships were examined using par-
tial plots and the variance explained was examined.

A correlation matrix of continuous predictors identified a
strong positive correlation between ordinal date and day of
incubation (r=0.44, N=3282, P<0.001) (Online Resource
1: Fig. 1a). We therefore removed ordinal date from our set of
predictors and re-ran the analysis.

Unsurprisingly, a repeated-measures (to account for
pseudoreplication) correlation test showed there was also a
strong positive correlation between each attentiveness mea-
surement and its predecessor (= 0.64, N=3271, P<0.001).
To examine how this temporal autocorrelation affected the
model, we calculated attentiveness at two additional temporal
resolutions (mean daily attentiveness and three attentiveness
measures per day (6 am.—9:30 a.m., 9:30 am. -5 p.m., 5
p-m.—9 p.m.)). We used repeated-measures correlation tests
to check whether the positive correlation between each atten-
tiveness measurement and its predecessor is similar at these
temporal scales. We also repeated the main random forest
analysis of these different temporal resolutions of attentive-
ness to check whether predicted relationships were similar for
the original 33-min sampling frame.

Finally, we used on-bout duration and off-bout duration as
the dependent variables in two random forest models with the
same full set of predictors that was used for attentiveness. We
used AIC for model selection using the same procedure as
detailed for the attentiveness model.

Comparison with general linear mixed model

To provide a comparison with the results of the random forest
model, we conducted a general linear mixed model (GLMM)
of attentiveness using the same dataset and candidate predic-
tors. Analysis was implemented in the R package lme4 (Bates
et al. 2015) using nest identity as the random factor. Variables
were selected for inclusion in a final model by stepwise back-
ward elimination of non-significant predictors from the global
model. The marginal and adjusted R* value was determined
for the final model using the R package MuMIn (Barton 2018)

and fitted relationships visualized using the visreg package
(Breheny and Burchett 2017).

Nest attentiveness and temperature

Ambient temperature was found to be an influential variable
in all of the random forest models and in the GLMM. The
relationship between ambient temperature and attentiveness
was therefore examined further for adherence to a theoretical-
ly predicted threshold or hinge function. The R package
“chngpt” (Fong and Permar 2017) was used to determine a
statistically significant changepoint in the data. The splines
package in base R was used to fit a linear spline function with
a single knot at the pre-determined temperature changepoint.
A linear regression was used to determine the statistical sig-
nificance and R” between this function and nest attentiveness.
Finally, we examined the relationship between ambient tem-
perature and on- and off-bout durations to compare it with the
attentiveness and ambient temperature fit.

All data analysis was conducted using R Studio version
1.1.383 (RStudio Team 2015) running R version 3.5.2 (R
Development Core Team 2015). The use of artificial intelli-
gence to classify incubation behavior (as opposed to manual
classification) minimized the opportunity for observer bias
and, in this sense, it can replace traditional blinded methods.

Results

All eight nests remained active throughout the incubation pe-
riod and each nest achieved 100% hatching success. Nest
attentiveness was found to be dependent on a number of var-
iables but overall, during the incubation period (from the start
of incubation until the first egg hatched), mean incubation
attentiveness was 72%. Mean incubation attentiveness of in-
dividual nests varied from a minimum of 68.2% in ch04 2018
to a maximum of 78.8% in ch12 2018. On- and off-bout
durations are also complicated functions of several variables
but overall mean on-bout duration over the same period was
16 min and mean off-bout duration was 7 min (Table 1).

Determining the onset of incubation

Our combined analysis of mean values for all video channels
indicated a mean incubation onset at 6 p.m. on the evening
that the penultimate egg was laid (Fig. 2). This was largely
supported by the temperature difference (in-nest temperature-
ambient temperature) changepoint data from the seven nests
that were instrumented with temperature sensors, which show
an incubation onset of ~6 a.m. on the penultimate egg day
(Online Resource 1: Fig. 3a).

At the individual nest level, for seven of eight nests,
AMOC changepoint analysis placed the start of incubation
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Fig. 2 Defining the onset of incubation. Each point represents an
individual measurement of nest attentiveness at a 33-min temporal reso-
lution. With data from all channels aligned on the day on which the
penultimate egg was laid (the day on which the penultimate egg was laid
is day zero on the x-axis), a changepoint in mean attentiveness was

within 2 days of the penultimate egg lay (Table 1).
Examination of the data shows that the start of incubation
(i.e., the changepoint) is associated with very low attentive-
ness (0—0.2) becoming rare occurrences (Fig. 2, Online
Resource 1: Fig. 2Aa-g). For the one channel where the
AMOC changepoint method did not provide a plausible start
date to incubation (ch04 2018), the relaxed criteria of the
PELT method indicated an incubation initiation within 1 day
of the penultimate egg being laid and conformed to a similar
visual pattern as the other channels and was thus adopted as
the start date (Online Resource 1: Fig. 2Ah).

Random forest modeling of factors determining
incubation behavior

In our main random forest model (33-min resolution attentive-
ness with ordinal date included as a predictor), AIC model
selection indicated the most parsimonious model included
ambient temperature, nest identity, time of day, day of incu-
bation, and ordinal date as predictors (Online Resource 1:
Table 1A). This model explained 57% of the variance on the
training dataset with low error rates (Table 2) and had a mean
squared error of 0.025 on the testing dataset (or a mean abso-
lute error of 12% attentiveness).

Ranking of variable importance showed that the model was
mainly informed by ambient temperature, time of day and day
of incubation; with minor effects of day of year and nest iden-
tity (Online Resource 1: Fig. 4A). Attentiveness decreased
with increasing temperature above around 24 °C, increased
at dawn and dusk; it slightly increased from incubation initi-
ation until around day 6 of incubation; it slightly increased
with ordinal date and showed some variation between individ-
ual nests (Fig. 3).

Removing the correlated predictor, ordinal date, from the
model reduced the variation explained slightly to 56%, but as
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detected at 0.75 days after the start of the day (shown with the red dashed
line). This changepoint indicates the start of incubation. Black lines show
mean attentiveness values before (29.42%) and after (72.36%) the start of
true incubation

variable rankings and error rates remained similar, we main-
tained ordinal date in the model for the main analysis as dic-
tated by AIC (Online Resource 1: Tables 1A, 2).

Correlations between attentiveness measures and their pre-
vious measurement remained strong and positive at when
measured daily and at a rate of three measures per day (3 daily:
r=0.26, N=355, P<0.001; daily: »=0.53, N=114,
P <0.001). Repeating the random forest analysis with the dif-
ferent temporal resolutions of attentiveness led to small chang-
es in model fit, but predicted relationships and predictor rank-
ings remained similar (Table 2). All subsequent analysis and
discussion of attentiveness is therefore based primarily on the
model which included ordinal date as a predictor and de-
scribed attentiveness at a 33-min resolution (Table 2).

On-bout duration was most parsimoniously explained by
ambient temperature, time of day, wind speed, nest identity,
day of'year, nest orientation, rainfall, and clutch size according
to the AIC (Online Resource 1: Table 1A). The resulting ran-
dom forest model of on-bout duration did not explain as much
variation as seen in the attentiveness model (23% vs. 57%),
but predictor rankings and shape of relationships were similar.
On-bout duration decreased above 20 °C (with a noisy rela-
tionship at lower temperatures), increased at dawn and dusk,
and peaked mid-way through the incubation period (Online
Resource 1: Fig. 5A). Random forest modeling of off-bout
duration was not informative, with none of the predictor var-
iables having a clear effect and little variation in durations
(Table 2). Off-bout duration did not vary substantially with
temperature, time of day, or day of incubation (Online
Resource 1: Fig. 5A).

Comparison with general linear mixed model

We compared the performance of a random forest model with
that of a GLMM for the main attentiveness model. After
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Table 2 Showing the results of random forest models. MSE mean
squared error, MAE mean actual error (% attentiveness). Top three
predictor variables are shown in ranked order according to their

contribution to model fit. The attentiveness model shown in italics is
the main model used in subsequent analysis

Incubation metric Variance MSE MAE Top 3 predictor variables
explained (%)
Attentiveness (33-min resolution) 57.03 0.026 11.59% Temperature
Time
Day of incubation
Attentiveness (33-min resolution) 55.96 0.025 11.54% Temperature
excluding ordinal date Day of incubation
Time
Attentiveness (3/day resolution) 63.39 0.012 11% Temperature
Time
Day of incubation
Attentiveness (daily resolution) 40.07 0.012 11% Temperature
Day of incubation
Ordinal date
On-bout duration 23.22 497.01 10.68 min Temperature
Time
Day of incubation
Off-bout duration 5.24 197.92 4.86 min Ordinal date

Clutch size
Day of incubation

removing non-significant predictors from the model (clutch
size, male age and female age), the GLMM had a marginal
R? of 0.229 and a conditional R” of 0.235. The final model

predicted that nest attentiveness decreased with day of year
(Estimate = — 1.8473, Df=8, P=0.046), ambient temperature
(Estimate=—1.81"2, Df=3217, P<0.001), hour of day

Fig. 3 The relationship between 5 a )
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(Estimate =—6.497°, Df = =3290, P<0.001), wind speed
(Estimate=—4.86 >, Df=3220, P<0.001), and rainfall
(Estimate =— 2.5972, Df=3288, P<0.001) but increased with
day of incubation (Estimate = 53373 , Df=3482, P<0.001)
with only a very small effect of nest identity (Nest variance-
=0.0003407, Residual variance =0.0450431).

Nest attentiveness and temperature

Changepoint analysis found a statistically significant
changepoint in the relationship between nest attentiveness
and temperature at 24 °C (ML ratio maximal statistic =
173.91, P <0.001). Fitting this spline to the data with a single
linear hinge at 24 °C gave a significant fit (F=512.2,
P <0.001, multiple R* = 0.238) (Fig. 4).

Discussion

Use of a deep learning model to automate estimations of nest
attentiveness from nest camera data provided us with a dataset
at 1-s temporal resolution covering the entire incubation peri-
od of purple martins with minimal disruption to the birds and
was only limited by inadequate in-nest lighting preventing the
collection of data overnight. Validation of this dataset showed
that the deep learning model approached human accuracy in
estimating nest attentiveness (Williams et al. 2019).

Two studies have previously attempted to measure incuba-
tion nest attentiveness in the purple martin. Kendeigh (1952)
used a thermocouple in a single Purple Martin nest for 6 days
of the incubation period and found an average attentiveness of
77%, and Allen and Nice (1952) directly observed three nests
for a 4-h period in the middle of the day and estimated atten-
tiveness at 70%. Our mean estimation of attentiveness (72%)
sits comfortably between these estimates and, more broadly, in
line with estimated passerine attentiveness of 75% (Deeming
2002). Our estimate of daytime mean on-bout duration of
16 min is also in-line estimates for other passerine cavity
nesters such as estimated on-bouts of 15 min in tree swallows
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Fig.4 The fitted relationship between nest attentiveness and temperature.
Gray points show the raw data, the red line shows the fitted relationship,
and the dashed green line shows the location of the changepoint and
where the spline was fitted
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(Tachycineta bicolor) (Ardia et al. 2010) and 17.5 min in
European starlings (Sturnus vulgaris) (Reid et al. 1999).

Attentiveness should be relatively robust to small “single
frame” errors in deep learning classifications as the actual
result is averaged over many frames. Conversely, although
we found strong adherence between modeled and manually
validated videos, modeled on- and off-bout durations are like-
ly to be more error prone as a single frame error can substan-
tially change the measurement. Here, we mitigated this error
by disregarding on- and off-bouts of less than 30 s. Although
we found similar relationships between on-bout durations and
attentiveness, we focus our analysis on attentiveness as the
better-determined metric.

Our attentiveness metric could be considered an over-
estimate as it includes instances of males sitting on eggs in
addition to “true” incubation by females. Although male pur-
ple martins are not generally considered to assist with incuba-
tion and do not have a brood patch (Allen and Nice 1952), we
found that ~ 15% of the total attentiveness in our set of man-
ually viewed videos was achieved by males. Furthermore, the
males tended to fully sit on the eggs in the absence of the
females in a manner consistent with incubation, as opposed
to only egg guarding. While thermal transfer is likely to be
reduced in male “incubation” compared with female incuba-
tion with a brood patch, as there will certainly still be some
incubating effect, we do not see its inclusion as a shortcoming
in our analysis.

Nest attentiveness in any given period was highly positive-
ly correlated with nest attentiveness in the previous period in
three different temporal resolutions. Furthermore, attentive-
ness in all three temporal resolutions was principally de-
scribed by the same covariates—namely temperature, time
of day, and some measure of date (ordinal or day of incuba-
tion). This implies that attentiveness is driven by external con-
ditions (such as those included in our modeling) as opposed to
internal states, i.e., birds do not reduce attentiveness in a peri-
od simply because they already invested in high attentiveness
in the previous period, but rather adjust attentiveness to envi-
ronmental need.

Although it is generally thought that purple martins com-
mence incubation after laying their penultimate egg (Allen
and Nice 1952; Tarof and Brown 2013), our data showed
some individual variation in this trait, with incubation starting
up to 1 day before or after this event. This variation, coupled
with the gradual increase in pre-incubation attentiveness ob-
served in some nests, highlights the importance of taking an
individual nest-level approach to defining the start of
incubation.

We found strong evidence that purple martins adjust their
incubation behavior in response to ambient temperature, with
a small decline in attentiveness from 10 to 24 °C, and a much
sharper decline above 24 °C. This appears to be achieved by
decreasing on-bout duration while maintaining a relatively
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constant off-bout duration. This result supports the observa-
tions of Allen and Nice (1952) who reported an increase in
purple martin attentiveness during a “cold snap” of weather,
but is contra to Finlay (1976) who did not find any significant
effect of ambient temperature on adult entrances and depar-
tures from martin nests as quantified by a photoelectric device.
Many studies have found a negative relationship between am-
bient temperature and incubation attentiveness in temperate
regions (Conway and Martin 2000; Deeming 2002; Smith
et al. 2012), and it is explained by the need to spend more
effort to maintain egg temperature during colder weather. We
found support for a threshold-type response, where the effect
of increasing temperature becomes much more pronounced
above 24 °C. This is very similar to Kendeigh’s (1952) de-
scription of house wren (7roglodytes aedon) incubation atten-
tiveness declining sharply beyond 26 °C and the findings of
Conway and Martin (2000) with orange crowned warblers
(Vermivora celata). Once incubation is initiated, exposure of
eggs to temperatures below physiological zero (PZT) can re-
sult in decreased viability (Viega 1992; Amold 1993). The
exact temperature at which PZT occurs is debated and most
likely varies by species (Deeming 2002) but is widely estimat-
ed around 26 °C (Haftorn 1988), in broad agreement with the
estimated changepoint in our data. It appears that the purple
martins are not only adjusting their behavior to ambient tem-
perature in a linear fashion but are capable of a relatively
complex two-step response to temperature, where they are
detecting when PZT is achieved and reducing their incubation
effort. It is unclear whether they do this by direct assessment
of either ambient or egg temperature or through some signal-
ing from the embryos which may themselves be capable of
sensing their own temperature (Reed and Clark 2011) and
communicating with their parents via emission of volatile
chemicals (Saino et al. 2015).

We detected higher attentiveness before ~9:30 a.m. than in
the middle of the day and a parallel slight increase in atten-
tiveness after ~6 p.m. This is in perfect agreement with
Kendeigh’s (1952) thermocouple study of a single martin nest
which found attentiveness to be highest at dawn and dusk and
lower during the middle of the day. The same phenomenon
was reported in uniparental incubating shorebirds (Smith et al.
2012) and Sprague’s pipit (Anthus spragueii) (Davis and
Holmes 2012), but no trends in attentiveness were found
through the day in western meadowlark (Sturnella neglecta)
(Powell etal. 2012). It is likely that this trend is, at least partly,
driven by the correlation with ambient temperature, with
warmer temperatures in the middle of the day simultaneously
decreasing the need for incubation and providing better hunt-
ing opportunities (purple martins are aerial insectivores) away
from the nest. However, the correlation in our data between
time of day and temperature was relatively weak (Online
Resource 1: Fig. 1A). While we were not able to record data
overnight due to insufficient light levels in the nest, it is

thought that passerine nest attentiveness approaches 100%
overnight during incubation (Deeming 2002). It could be that
the increased dawn and dusk attentiveness captured here is the
onset of that behavior. Increased nocturnal attentiveness could
be a positive evolutionary response to increased egg predation
pressure overnight or could simply be a natural consequence
of purple martins not hunting at night and hence no longer
dividing their time between feeding and incubating.

Given that egg cooling rate increases with egg age
(Cooper and Voss 2013), we might expect attentiveness
to increase with day of incubation. This was indeed
observed in black-capped chickadees (Poecile
atricapillus) (Cooper and Voss 2013) and prairie nesting
ducks (Loos and Rohwer 2004). However, other studies
of female-only incubators have found a decrease in at-
tentiveness over the course of incubation (Brown and
Fredrickson 1987; Yerkes 1998). In common with
Kendeigh’s (1952) study of house wrens (Troglodytes
aedon), our model showed a slight increase in attentive-
ness over the first few days of incubation followed by a
relatively constant pattern over the rest of the incubation
period, although, in our data, the day of incubation was
a relatively minor predictor of attentiveness. It is possi-
ble that discrepancies between studies with respect to
constancy of incubation over the incubation period are
driven by differences in how incubation initiation is
defined between studies, or underlying correlations with
ambient temperature.

Interestingly, our data showed very little variation in
incubation attentiveness by intrinsic factors such as
adult age class or clutch size. That there was little dif-
ference in nest attentiveness by adult age class (SY vs.
ASY) was surprising given that multiple studies have
indicated that first breeding seasons in purple martins
are not as productive as for experienced birds. SY fe-
male martins lay smaller clutches and have lower
nesting success (Davidar and Morton 1993), and SY
males have been found to provide less parental care
(Morton and Derrickson 1990) and provision less food
to nestlings (Wagner et al. 1997) than ASY males.
Beyond purple martins, inexperienced breeders have
been shown to be less attentive incubators in Canada
geese (Branta canadensis) (Aldrich and Raveling
1983) and to have decreased survival of their offspring
in herring gulls (Larus argentatus) (Bogdanova et al.
2007), but to have no difference in attentiveness in blue
tits (Cyanistes caeruleus) (Amininasab et al. 2016). We
also expected that nest attentiveness would increase with
increasing clutch size as has been observed in pied fly-
catchers (Ficedula hypoleuca) (Blagosklonov 1977) and
black-capped chickadees (Poecile atricapillus) (Cooper
and Voss 2013) and, more generally, with increasing
“clutch mass” across 354 avian species (Deeming
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2002). The lack of a relationship in our study may be
due to the relatively small variation in clutch size in our
dataset (4—6 eggs) compared with 4—-12 eggs in the fly-
catcher study and 4-9 eggs in the chickadee study.

We compared the results of a random forest and GLMM for
their ability to model nest attentiveness in the purple martin.
We found that the random forest was able to explain a much
higher proportion of the variation in our dataset, presumably
because it allows for complex non-linear relationships in the
data (Conway and Martin 2000). For example, while the ran-
dom forest model allowed for a gradated response to ambient
temperature, with different degrees of response in different
temperature ranges, the GLMM fits a single slope to the entire
temperature range and thus misses the step-change the
attentiveness-temperature relationship after PZT is reached.
While random forest models are sometimes criticized for
overfitting the data (Segal 2004), the close relationship be-
tween our training and validation data error rates indicates
excellent model generalization; therefore, this is not likely
the case in this instance.

Changes in nest attentiveness with temperature, time of
day, and day of incubation were apparently driven by changes
in on-bout duration. Mirroring overall attentiveness, on-bout
duration was principally affected by temperature, with de-
creased bout duration with ambient temperature above ~
20 °C. This likely reflects a re-allocation of time away from
prolonged incubation which is likely not necessary at in-nest
temperatures above PZT in favor of other activities such as
feeding. There is a noisy relationship with temperature and on-
bout duration below ~20 °C. This may be due to a slight
negative relationship being masked by an increase in bout
duration with day of incubation which itself co-varies with
temperature.

Off-bout duration showed very little variation in our
dataset overall and did not clearly co-vary with any of
the explanatory variables tested. If purple martins are
principally varying on-bout duration in response to in-
cubation needs, it is possible that a relatively consistent
off-bout duration is driven by the consistent need to
guard eggs from predators (Komdeur and Kats 1999)
or from intraspecific and interspecific nest usurpers.
So, as all of our nests were in the same location and
in similar colony sizes across years, it is possible that
the stable off-bout duration is due to stable nest-loss
risks.

In this study, we have used a novel method of automating
classification of nest camera videos using deep learning to
provide data for a detailed analysis of incubation behavior in
the purple martin. This has given us the ability to analyze
continuous data for the whole incubation period, rather than
having to use just a subset due to the laborious nature of
manually classifying video footage. The results indicate that
purple martins are adjusting their incubation behavior in a
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complex manner according to ambient temperature condi-
tions. We have demonstrated the value of using deep learning
analysis of nest camera video recordings for behavioral sci-
ence. The same techniques could be used to estimate different
metrics of incubation such as “total incubation” time (with the
inclusion of overnight video footage) which might relate to
more sensitive evolutionary metrics such as egg volume. The
same approach could also be used to create high-resolution
data of other in-nest behaviors such as provisioning or
grooming.
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