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ABSTRACT

Deep learning models have been developed to automatically analyze
video clips of purple martin nesting behavior. Two separate models
have been constructed, one for incubation and one for provisioning.
The incubation model is a simple two class model that analyzes
the videos to determine if an adult purple martin is incubating the
eggs/young nestlings or not. The model is a Keras/Tensor Flow
convolutional neural network (CNN) trained with 12 thousand still
images and achieves a validation data set accuracy of 99.5% percent
on still images. A comparison of the results of the automated video
analysis with sample validation videos viewed manually shows
good agreement; the model approaches human accuracy. Some
conclusions from the incubation analysis will be discussed. The
provisioning analysis requires a much more complex 3 class model
which must distinguish between zero, one parent or both parents
on the nest. With training sets including 26 thousand images the
CNN model demonstrates a validation set accuracy of 99% on the
still images. However, the actual the video analysis presents diffi-
culties. Several different CNN models have been tried but results
were similar. The best results to date on analyzing the videos for
provisioning events have been 88% accuracy with 10% false posi-
tives. A discussion of the conclusions from the provisioning model
and model analysis will be presented.
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1 INTRODUCTION

Purple martins (Progne subis) are insectivorous migratory birds in
the swallow family. The species spends its winter months in South
America, principally Brazil, where it roosts in forest and forested
river islands [10], but its breeding range expands throughout much
of the Eastern United States, with small pockets of breeding popula-
tions in the Pacific Northwest and Southwestern deserts. In common
with other aerial insectivores, purple martins are in decline across
their eastern breeding range [20]. It is currently thought that the
root of this decline lies in the breeding range (as opposed to in
South America) [12] where the species is experiencing both pheno-
logical mismatch (whereby its northward migration to the breeding
range is no longer timed to coincide with peak food availability
due to climate change) [11] and competition for nest sites [18]. The
eastern subspecies of purple martin (Progne subis subis) is highly
unusual in that it relies entirely on man-made structures (princi-
pally multi-compartment nest boxes and artificial gourds) for nest
locations [3].

Population size and stability is determined by the relative lev-
els of fecundity and mortality. Collecting reliable data on factors
determining the altricial nestling survival rates is thus essential
to pinpointing the source of decline in purple martins. Hatching
success is largely determined by incubation attentiveness (i.e. the
proportion of time that the adults spend brooding eggs between
laying and hatching) [7] and nestling survival to fledging is largely
determined by provisioning rate (i.e. how much food is brought to
the nestlings by their parents) [29]. However, collecting data on
these important life stages has historically been very challenging.
Direct observation of active nests is not only time consuming and
technically difficult, but also carries the risk of disturbing the very
activities researchers wish to document [1]. Researchers have there-
fore often turned to in-nest devices such as temperature or pressure
sensors which can record proxies of incubation or provisioning
behavior (e.g. [2, 14]), but which have unquantifiable misclassifica-
tion errors [22]. In recent years, the use of continuously recording
in-nest video cameras has become common place [5], which has
reduced disturbance to birds and reliance on proxy data, but has
created a new problem—how to review and classify all of the data.
Most studies rely on subsampling the data for analysis [6], but
this approach can miss important biological variation. Using deep
learning techniques to automate the classification of nest camera
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footage has the potential to allow researchers to analyze the full
dataset in a time and cost effective manner.

Here we fitted 20 purple martin nest boxes over two years (2017
and 2018) with high definition nest cameras at Iroquois National
Wildlife Refuge in Western New York State. Cameras were set
to record from 6am until 9pm (insufficient light level prevented
overnight recording) from the start of nest building until the last
nestling fledged. Given the average incubation period of 16 days
and nestling period of 28 days in the purple martin, this generated
close to 13,000 hours of footage. Video clips were categorized by
nest stage (incubation; hatch day-day 5; day 5-10; day 11-15 and
day 16-fledging) for analysis. We aimed to use deep learning to
reliably estimate nest attentiveness during the incubation period
and provisioning rate during the nestling period.

The results of the incubation nest attentiveness model will be
used in a study of the intrinsic and extrinsic factors affecting nest
attentiveness in the purple martin. The results of the provisioning
rate model will be used to test the ’parental compensation’ hypoth-
esis, which predicts that parents of nestlings afflicted with a high
load of nest parasites (fleas, blood-feeding mites and blowfly larvae
in this case) will increase their food supply to their brood to negate
any fitness cost to the nestlings [25]. To manipulate parasite load,
half of the study nests had their nest materials (with associated
parasites) replaced with clean nesting materials after day 5 of the
nestlings’ lives.

2 RELATED WORK

The recent growth in large image datasets in the ecological sci-
ences [8, 26], and the need to reduce the laborious manual classi-
fication of them, has led to the emergence of deep learning tech-
niques being used in the field [15, 27]. Studies to date have gen-
erally worked with the still images generated by camera traps,
and have attempted species classification and abundance prob-
lems where "empty" images must be correctly discarded and "occu-
pied" images must have species correctly identified and individuals
counted [16, 24, 28]. Many of these studies utilize projects available
through the Zooniverse platform (https://www.zooniverse.org/)
which allows researchers to share their data projects and invite cit-
izen scientists to volunteer to analyze them. Pre-analyzed datasets
such as these provide an in-built validation set for deep learning
projects and allow comparison between accuracy achieved by ex-
perts vs. citizen scientists vs. deep learning models [28]. In particu-
lar, the Snapshot Serengeti dataset [23] has been used to develop
deep learning models for mammalian species identification with
accuracy approaching human levels (up to 97%) [24] and with an
almost entirely automated classification pipeline which represents
a huge reduction in labor [16]. So far, however, deep learning tech-
niques for classifying image data in ecology are mostly limited
to the analysis of these emerging "standard" datasets. We are not
aware of any study so far which has used video nest camera data
and attempted to use deep learning to classify avian behavior during
breeding.
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3 METHOD

3.1 Convolutional Neural Network Structure
and Parameters

The model chosen to analyze the purple martin incubation and
provisioning videos is a convolutional neural network based on
the Keras API for Tensor flow [4] which is based on Python. The
calculations were done using NVIDIA Tesla P100 or V100 GPUs.
The video frame processing was done with Python cv2. The original
high resolution video output image size of 1920X1080 pixels was
reduced to 0.1 times this size to speed processing. Note that even
with the ten times reduction there was no noticeable pixilation
of the images. In addition, also to speed processing, the 30 frame
per second videos clips were reduced down to 1 frame per second
during the production runs on both the incubation analysis and the
provisioning analysis. The majority of the analysis was done with a
six convolutional layer CNN. This CNN was chosen because it did a
good job fitting the CIFAR-10 data set [13]. The architecture of the
CNN network is shown in Table 1. The first layer is convolutional
with a rectified linear unit (ReLU) activation; this is followed by
a dropout layer set to 0.2 for randomization. The second convolu-
tional layer, also activated by ReLU, is followed by a pooling layer.
This structure of convolutional layer, dropout, convolutional layer,
pooling layer is repeated two more times. The image is flattened
followed by another dropout layer, then a fully connected layer
and another dropout layer. The final fully connected output layer
has a softmax activation. The optimizer was RMSprop which is
similar to gradient descent with momentum. The filter size was
empirically varied from 3X3 to 32X32 while monitoring the quality
of the fit. The learning rate was varied from 10~ to 10°°. It was
found that the CNNs trained the best at 107 for both the incubation
model and the provisioning model. At this learning rate the model
would train stably in 20-40 epochs without large oscillations, for
example see Figure 1. Example training runs are discussed for each
model below. It was found that setting random seeds was critical in
obtaining the reproducible outputs required to conduct model opti-
mization; otherwise the random nature of the network initialization
lead to very non-reproducible results and made model optimization
very difficult and time consuming. The specifics of constructing the
incubation model and the provisioning models are discussed below.

3.2 Training and Validation Datasets

Video clips were split into still images sampling at a rate of 1 frame
per 3 seconds using FFmpeg [9]. Training images were chosen to en-
sure that every nest (8 for incubation and 20 for provisioning) was
represented approximately equally. We also balanced the training
datasets by hour of day (6am-9pm) to ensure all lighting conditions
were adequately represented. For the incubation training set we
balanced the dataset by day of incubation (0-16). The provisioning
models are split into two training sets depending on nestling age
(0-5 days and 6-10 days). In both sets, the datasets initially repre-
sented each of the 20 nests equally with every nestling age and hour
of the day also in balance. Due to the rarity of 2-bird images (see
"Deep Learning Model of Provisioning") we subsequently supple-
mented the training set with additional 2-bird images from select
nests. The final incubation training set included 12,144 images, the
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Figure 1: Training the incubation CNN model (left) and the provisioning CNN model for day 6-day 10 (right). The red line is
the model accuracy on the training data. The green line is the model accuracy on the validation data; it represents the model

generalization accuracy.

Table 1: CNN Architecture

Layer Output Shape Parameters
conv2d; 192 108 32 7808
dropout; 192 108 32 0
conv2dy 192 108 32 82,976

maxpooling2d; 96 54 32 0
conv2ds 96 54 64 165,952
dropout; 96 54 64 0
conv2dy 96 54 64 331,840

maxpooling2dy 48 27 64 0
conv2ds 48 27 128 663,680
dropouts 48 27 128 0
conv2dg 48 27 128 1,327,232

maxpooling2ds 24 13 128 0

flatten 39,936 0
dropouty 39,936 0

dense; 1096 43,770,952
dropouts 1096 0

denses 2 2194

day 0-5 provisioning set included 30,285 images and the day 6-10
provisioning set included 40,825 images.

Validation videos were selected to also balance representation of
each nest, day and hour of day. None of these validation videos are
included in the training datasets. Validation videos were manually
analysed to provide a comparison with the deep learning model
outputs.

4 DEEP LEARNING MODEL OF INCUBATION

Conceptually the incubation model is very simple. There are only
two classes, they are incubating or not incubating. If one or both
parents is on the nest, the model should classify this as incubating;
if neither parent is on the nest the model should classify this as not
incubating. The model chosen to analyze the incubation videos is
the six convolutional layer convolutional neural network (CNN)
based on the Keras API for Tensor flow as described above. Another
incubation CNN model also was tried but results were similar. The
final filter size chosen was 9X9 (as per the provisioning model, see
below) and the learning rate was 10~. Training the model on 12,144
static video images produced an excellent result; see the training
curve shown in Figure 1. Training on 80% of the images and reserv-
ing 20% for validation yielded a model that achieved 99.5% accuracy
on the validation data and produced the Confusion Matrix shown
in Table 2. In contrast to changing the layers of the CNN model, al-
tering the training image set was found to be the key to generating
a good model. For example, it was found that occasionally the adult
purple martin would cover the eggs with leaves before leaving the
nest box: see Figure 2. During the development of the model, a
preliminary version of the model evaluated this case as incubating,
undoubtedly because the eggs were covered, even though it should
be not incubating. We added training images that included images
of the covered eggs appropriately labelled as not incubating. After
training, the model was then able to correctly evaluate this case.
The lesson is that the model can only be relied upon to correctly
evaluate those situations which are covered by the training images.
The final model analysis was compared with manually viewed
videos for validation. Based on 43 validation videos mean absolute
differences in nest attentiveness is less than 0.02 nest attentiveness
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Table 2: Incubation Model Confusion Matrix

Model Model

Actual zero birds  one bird

zero birds 638 8
one bird 4 791

units. This approaches the accuracy which a human can attain and
is more than sufficient to use these results for incubation analysis
and to combine this data with other data for a more sophisticated
analysis of incubation. The incubation videos have been analyzed
in a production mode. To speed the analysis only one frame per
second is analyzed. Although there is a simple linear relationship
between nest attentiveness and the number of images classified
as occupied, we checked that analyzing one frame per second pro-
duced the same result as 30 frames per second; the differences were
out in the fourth decimal place. Using this approach, a 33.5 minute
video can be analyzed in less than 4 minutes, that is, almost 10
times faster than real time. Incubation production runs have been
completed and the incubation data is in the process of analysis.

5 DEEP LEARNING MODEL OF
PROVISIONING

In contrast to the incubation model, the provisioning model is
much more complex. The provisioning model has three classes:
zero, one or two birds on the nest. The goal is to analyze how
many provisioning events (that is when an adult provides food
to the nestlings) occur during each video. A provisioning event
can be an adult bird entering a nest alone to feed the nestlings or
a second parent bird that enters the nest box when it is already
occupied by their partner. In preliminary manual analysis it was
found extremely rare that an adult would enter the nest and not
provision. The way the model works is that a transition from zero
to one or from one to two birds is defined to be a provisioning event.
The difficulty is that any error can simulate a false positive event. A
6 layer CNN as described above similar to the incubation model was
constructed in Keras/Tensorflow. Due to the difficulty in modelling
provisioning, the filter size was carefully optimized; 9X9 filters
were found to be the best. Other CNN architectures were also tried,
notably the 16 CNN layer VGG16 model [21]. Little difference was
noted between the CNN models given the same training data. Two
different provisioning models were constructed, one for nestlings
of age 0 to 5 days (d0-d5) and the other for nestlings of age 6 to
10 days (d6-d10). The models were trained with images specific to
their age group. The only exception is that some of the two bird
images from the d0-d5 training set were also used in the d6-d10.
This is because two bird images were relatively rare and hard to
find. When two birds are on the nest the nestlings were not visible
so there should be no difference between d0-d5 images and d6-d10
images. An example training plot from the d6-d10 model is shown
in Figure 1.

Even though the best models correctly classify better than 99%
of the still images, see the Confusion Matricies shown in Tables 3
and 4, a few misidentifications among the many thousands of im-
ages on a single video clip can produce a poor analysis. Figure 3
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gives an idea of some of the difficulties in properly classifying the
provisioning images. One difficulty is in determining exactly when
a bird enters the nest. For example, images B and C of Figure 3
show how subtle the difference between on the nest and off the
nest can be. The problem is not in knowing exactly when the provi-
sioning event starts. The problem is that often birds will linger and
move about in the nest entrance. Another problem is determining
whether there is one or two birds on the nest. For example images
D and E of Figure 3 show a single bird spread out (D) vs two birds
clustered together (E). In image F the bird completely blocks the
camera view of the nest making it impossible to determine whether
there are one or two birds on the nest. When a human is viewing
the video he or she can look at a sequence of images to resolve these
difficulties. However, the CNN must classify the images based ex-
clusively on each separate image. In order to correct this we employ
post classification filtering. Two assumptions are made to guide the
filtering. The first is that provisioning events must last for several
seconds while the bird climbs into the nest, feeds the nestlings and
leaves. The second is that the provisioning event cannot be repeated
within a given period in order to give the bird time to leave, catch
more food and return. The filter takes the form of averaging over
a number of seconds and eliminating events spaced closer than a
specified time. In the final analysis 6 seconds was chosen for the
averaging and 60 seconds for the minimum provisioning event sep-
aration. For an illustration of how this filtering works see Figure 4.
The blue line shows the raw unfiltered analysis and the red line
is the corrected, filtered analysis. The red line correctly predicts
6 provisioning events. The combined classification and filtering is
far from perfect. A set of 40 videos was used for model validation.
At this time the best performance achieved on the day 0 to day 5
hatchlings is 99% compared to manual viewing. (88% accuracy, that
is 88% of all events are detected, with 11% false positives). The day
6 to day 10 hatchling data where the provisioning rate is greater
is slightly poorer with 93% compared to manual viewing (77% cor-
rect and 15% false positives). Although this is considerably poorer
than a human can do, nevertheless this accuracy is adequate for
performing automated provisioning detection and drawing mean-
ingful conclusions about purple martin provisioning behavior. To
check this, we estimated the variance from the comparison of the
observed and calculated provisioning validation data set. The data
appeared to be normally distributed so we assumed a normal dis-
tribution. We also incorporated a bias term linearly dependent on
the provisioning rate. That is, the higher the provisioning rate the
more likely we are to miss some provisioning events that are close
together. With these parameters we ran Monte Carlo simulations.
For provisioning rate differences of 10% or greater between the
control group and the experimental group the inaccuracy of the
model was irrelevant. The model inaccuracy only was important for
differences on the order of 5% or less. Variations between different
sets of parents for different nests is quite likely to be much larger
and is expected to be the dominant source of variation rather than
the model itself.

6 CONCLUSIONS-SUMMARY

Using deep learning models for automated analysis of videos of
purple martin nesting behavior has been accomplished. Incubation
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Figure 2: Three purple martin incubation images are shown. In image A There are no birds on the nest and the 6 eggs are
readily observed. This is a not incubation class image. In image B a female purple martin is incubating the eggs which are
therefore obscured. This is an incubation class image. In image C no birds are on the nest, however, the eggs are obscured by
leaves. This image should be classified as not incubation. Initial models classified this as incubation, based on the fact that the
eggs were obscured rather than recognizing that no birds were present. Adding labeled training images which included leaf
covered eggs as not incubation produced a model that correctly classified such images.

HQG-65

Figure 3: Six purple martin provisioning images are shown. Image A shows a bird on the nest provisioning one of the nestlings.
When this bird entered the empty nest, that is a nest with nestlings but no adult bird, we would record this as a provisioning
event. Images B and C show a bird entering the nest. In C the tail of the bird is barely visible but the bird is still considered
to be outside the nest. In image B the bird has barely entered the nest. Distinguishing exactly when a bird enters the nest and
therefore the start of a provisioning event can be difficult. This is exacerbated by the fact that birds often perch just outside the
nest and move in the vicinity of the entrance. Images D, E and F illustrate another difficulty in detecting provisioning events.
In image D a single bird is spread out over the nest. In image F two birds are huddled closely together on the nest. In image
F a bird is blocking the camera view. In image F there are actually two birds in the nest but there is no way to determine this
solely viewing this single image. When a human is viewing the video she or he can look at a sequence of images to resolve
these difficulties. However, the model must classify the images frame by frame.

models which are dependent only on getting the great majority model developed is much less accurate but, based on Monte Carlo
of the classifications correct on whether or not an adult bird is simulations, it should be sufficient for analysis of the provisioning
incubating or not incubating can be been accurately constructed. videos.

The analysis has been found to be largely independent of the ac-
tual structure of the CNN model but is very dependent on the 7 FUTURE WORK
training data images which must represent all possible important
events. Nest attentiveness accuracy from automated video analysis
approaches that which a human can produce manually. Automated
provisioning analysis is a much more difficult problem to solve
and it also relies on post classification filtering. The provisioning

The results of the incubation nest attentiveness model will be used
in a random forest model of factors affecting incubation effort
in the purple martin. Specifically, we aim to analyze the extent
to which purple martins adjust their attentiveness in response to
their environment (namely, ambient temperature, wind speed and
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Figure 4: Automated provisioning event analysis of a typical video. The y-axis is the number of adult birds in the nest (0 for
zero adult birds, 1 for one adult bird and 2 for 2 adult birds). Seven provisioning events are detected, see the red line. The
provisioning events occur at 0.1, 2.6, 5.2, 8.8, 16.6, 23.9 and 32.0 minutes. The blue line shows false positives that have been

eliminated by filtering.

Table 3: Provision Model Confusion Matrix
Day0-Day5

Model Model Model
Actual zero birds  one bird  two birds

zero birds 1830 6 0
one bird 17 5227 17
two birds 0 48 1020

Table 4: Provision Model Confusion Matrix
Day6-Day10

Model Model Model

Actual zero birds one bird  two birds
zero birds 2820 11 0

one bird 7 2116 13
two birds 0 26 1064

rainfall) and how much variation there is in attentiveness with
intrinsic parameters such as clutch size and adult age.

When results from the provisioning rate analyses are available,
we aim to test whether parasite load has a positive [25], negative
[17] or insignificant effect [19] on provisioning rate in the purple
martin. We will test for differences in provisioning rate both be-
tween nests which have had experimental parasite reductions and
control nests, and for differences in provisioning rate within nests
before and after parasite reductions.

Increasing our understanding of incubation and provisioning
behaviors in the purple martin helps us determine what affects
nestling survival and may help us to refine conservation efforts for
this declining long distance migrant.
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