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There is increasing interest in spatio-temporal analysis of environmental and ecological
responses to changes in the climate due to the recent concerns about climate change.
In this work, we propose a spatio-temporal modeling framework for analyzing envi-
ronmental and ecological data while accounting for spatial and temporal structure,
as well as climate effects. As an example, we consider data on bird migration in the
United States and analyze the spring arrival dates of Purple Martins between historical
data (1905-1940) from the North American Bird Phenology Program and recent data
(2001-2010) from the Purple Martin Conservation Association. The proposed approach
allows researchers to compare mean arrival dates while accounting for spatial and tem-
poral variability. Our resulis for Purple Martins showed statistically significant earlier
spring arrivals in parts of United States over the recent years. The proposed approach
provides a useful tool for statistical analysis of spatio-temporal data related to studies
of climate change.
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1. Introduction

The study of environmental and ecological response to climate change in recent years has
provided ample evidence of the ecological impacts of recent climate change (e.g., Walther
et al., 2002). In particular, bird migration is known to be sensitive to changes in the climate
and thus, there is increased interest in analyzing potential changes in the migration patterns
of migratory birds that may provide insight on environmental and ecological response to
climate change.

The history of bird migration studies dates back to Aristotle who compiled notes on
more than 140 species of birds and formalized ornithology as a science (Alerstam, 1990;
Berthold, 2001). Historically, ecologists and ornithologists have studied patterns of bird
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migration to learn about individual or groups of bird species, as well as to understand
the ecological impact of long- and short-term migration processes on local and global
ecosystems. Recently, statistical analysis of bird migration and phenological changes has
become increasingly popular in the context of more general problems such as climate
change (e.g., Cox, 2010; Mgller et al., 2004; Sherry, 2011) and epidemiology of infectious
diseases that are linked to bird migration such as avian influenza outbreaks (e.g., Bourouiba
et al., 2010; Feare, 2007; Liu et al., 2005). Often, these analyses require spatial or spatio-
temporal modeling due to the nature of migration data, which includes spatio-temporal
variability. There are several recent examples of such efforts in ornithology (e.g., Hiippop
and Winkel, 2006; Tgttrup et al., 2006) and epidemiology literature (e.g., LaDeau et al.,
2008, 2010; Munster et al., 2007; Onozuka and Hagihara, 2008; Si et al., 2009).

In this article, we focus on the analysis of migratory bird data in order to detect shifts in
spatio-temporal patterns of spring arrival dates in the United States (specifically, east of the
Rocky Mountains). Notwithstanding the spatial and spatio-temporal nature of the spring
arrival process, the literature on analysis of spring arrival dates using spatial and spatio-
temporal models is sparse (e.g., Both and te Marvelde, 2007; Gordo, 2007, use spatial
models; Hurlbert and Liang, 2012; Fink et al., 2010, use spatio-temporal models). In this
article, our goal is to develop a straightforward spatio-temporal approach for analyzing
spring arrival data. The proposed framework allows us to include weather, climate, and
other types of predictor variables in the model. The main focus is on developing a general
framework as an exploratory data analysis tool for inferential purposes. However, the
flexibility of the proposed framework allows for using this approach for predictive purposes
too. As a case study for spatio-temporal analysis of spring arrival dates, we assess changes
in arrival dates of Purple Martins between a historical and recent time period. Section 2
discusses the data and introduces the methodology. Results are given in Section 3, followed
by discussion and conclusions in Section 4.

2. Materials and Methods

2.1 Spring Arrival Data

The Purple Martin (Progne subis) is the largest member of the swallow family in North
America and is of special interest to birders, in large part, because of the close proximity
of its nesting sites to human settlements. Purple Martins spend the nonbreeding season
in Brazil and migrate to North America to nest, where naturalists have documented their
arrivals for more than a century. Adult Purple Martins commonly return to the same nesting
sites where they were successful in previous years and are easily detected by their unique
morphology and vocalization (Brown, 1997).

The North American Bird Phenology Program (NABPP) coordinated the efforts of over
3,000 volunteer naturalists to collect data on bird migration and breeding and wintering
distributions from 1881 to 1970. In response to recent climate change concerns, the NABPP
was revitalized in 2008 (Zelt et al., 2012) and is currently digitizing and transcribing the
nearly 6 million first arrival records reported for the more than 200 bird species tracked
by volunteers between 1881 and 1970. To date, more than a million handwritten records
have been scanned and transcribed, including all first arrival records for the Purple Martin
in the eastern United States (24°N—49°N, 67°-94°W; Courter, 2012). Once completed and
validated, the full complement of records will be freely accessible to biologists, managers,
and the general public. Since 2012, Georgetown University has established a partnership
program with the NABPP in order to accelerate the data digitization/validation process,
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Figure 1. Map of the study area with numbered grid cells.

as well as implement data visualization and statistical analysis tools to effectively extract
useful information from these data. The current attempt is an effort in developing a statistical
analysis tool along these goals.

To assess migratory changes over time, Purple Martin first arrival dates from the
NABPP were compared with recent first arrival dates collected by a contemporary net-
work of volunteer naturalists from the Purple Martin Conservation Association (PMCA;
www.purplemartin.org). Typical contributors to both programs were considered competent
naturalists (Courter, Johnson, Stuyck, et al., 2013), data collection protocols were gener-
ally similar (see http://www.pwrc.usgs.gov/bpp/ and purplemartin.org), and data from both
programs were collected and compared at the same spatial extent (Fig. 1). The only notable
difference was mode of reporting; most recent arrival records were reported online, whereas
most historical records were submitted by mail. Due to low sampling efforts during the
early decades as well as the last decades of the existence of NABPP, we only considered
Purple Martin arrival data for the period 1905-1940. We label these historical records
as “old” data in our analysis. Similarly, we analyze data compiled by the PMCA for the
period 2001-2010, a period of consistently high volunteer participation, and we refer to
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these data as “new.” Unfortunately, there are no comprehensive and reliable sources (or no
straightforward methods) to provide data with acceptable spatial coverage and sampling
effort for our analysis for the period between the 1960s and the late 1990s, therefore these
years are omitted from our analysis.

Here, we convert arrival dates to day-of-year, which is based on the number of days in
a calendar year starting January 1st for each year. For example, an arrival date of February
Ist corresponds to “day 32" (of course, one has to account for leap years accordingly). We
consider a spatial grid with 10 irregular sized cells (Fig. 1). The spatial grid and cell sizes
were decided based on a data criterion that required each grid cell and year combination to
include at least five data points to ensure that reasonable variability in arrival data for each
¢rid cell was achieved. By combining first arrival dates by grid cell (Fig. 1) and requiring 5
observations per year, our study actually compares mean first arrival dates over space and
time and abates a common criticism (Dickinson et al., 2010; Gordo and Sanz, 2006) that
individual first arrival observations are affected by differences in observer effort (Courter,
Johnson, Hubbard, et al., 2013).

Since we are interested in understanding the relationship between migration patterns
and climate, we include climate effects as predictor variables in the model. As an example,
we consider data on Winter North Atlantic Oscillation (Winter NAO or WNAO; http://
climatedataguide.ucar.edu/). The Winter NAO index we use is based on the difference of
normalized sea level pressure (SLP) between several stations averaged over monthly data
for the winter season (December—March). Positive values of the WNAO index are typically
associated with stronger-than-average wind over the middle latitudes and more intense
weather systems over the North Atlantic. Spring arrival of migratory birds is known to
depend on the NAO (e.g., see Huppop and Huppop, 2003; Vahatalo et al., 2004). Similarly,
other climate indices and weather variables can be easily included in the model.

2.2 Hierarchical Spatio-temporal Modeling

We use a hierarchical modeling approach to account for spatial and temporal variability in
the data, Hierarchical modeling has become increasingly popular in environmental stud-
ies due to their flexibility for complex data (Clark, 2005; Wikle, 2003). In a hierarchical
model, a complex problem is decomposed into a series of simpler sub-problems linked by
rules of conditional probability (Arab et al., 2008; Berliner, 1996). This flexible modeling
approach allows the analyst to simultaneously account for data sampling variability, param-
eter uncertainty, and potential dependence structures such as spatial and temporal structures.

Let Y, =(Yy,,...,Y,,) denote the vector of mean arrival days for the grid cells
(n =1, ..., 10) over the total number of years in the study (r = 1, ..., 46; 36 years in the
old data for 1905-1940, and 10 years in the new data for 2001-2010), where Y; , represent
the mean arrival days for the ith grid cell in the rth year. Using a hierarchical modeling
framework (Berliner, 1996), which relies on three stages of data, process, and parameter
models, we define the following Data Model

Y, ~ N(m, o), (1)

where m, denotes the mean arrival process and o> denotes measurement error. Here, the
observed arrival days in (1) are assumed to be conditionally independent (conditioned on a
process model that accounts for spatial and temporal dependence).
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The Process Model is defined following a time series threshold modeling approach
(Geweke and Terui, 1993; Tong, 1983):

boi+ pigp+ 01X, +e o if 1 <1 <36 (years 1905-1940)
m; = by + Wy +

b1 -X, + ey, if 37 <t < 46 (years 2001-2010)
where wo = (o1, - - -, Ho.,)" denotes the spatially varying common mean for the old and
new data, g, i, = ({11, ..., f41,,)" denotes the spatially varying mean specific to the old

data. Parameters by and by, represent the constant means for both periods, and the old data,
respectively. The predictor data on Winter NAO is given in the variable X, with different
coefficients for old (b ;) and new data (b, ;). Also, we consider different autoregressive
error processes € ; and e, ,, for the old and new data, respectively.

The autoregressive error processes are assumed to be different for the two periods. This
assumption is critical to account for potential autocorrelation for the arrival data within each
period. We define the error processes based on the following AR(1) models (e.g., Cressie
and Wikle, 2011):

e =Vie—1 + 0 Mg ™ N(0= O':f.) @
€, = 1€+ N2 N2y N(Oa O',i (3)
and the spatial structure for the spatially varying parameters g, i, for p =0, 1 is based

on Conditional Autoregressive (CAR) models (see, e.g., Arab et al., 2008; Banerjee et al.,
2004; Cressie, 1993):

2 = = 2
.|U-p,a‘|.|u-p,nn L N Hpt+ Z Up,hn(:up,m - Np.m)a ot | 4
meN;
where [,m =1,...,n, and ¢pn’s are weights defined such that cp,, = 1 for [ # m,
2
Cp.gqg = 0 for q = l! ees and Cp,hnrﬁ_lr = Cp.ndt;.m-

2.3 Model Fitting and Inference

Inference is conducted in a Bayesian framework using Markov chain Monte Carlo (MCMC;
Casella and George, 1992; Robert and Casella, 2004). The Bayesian framework requires that
we define prior distributions for unknown parameters (also called the Parameter Models
in the hierarchical framework). We define the following relatively noninformative prior
distributions (i.e., distributions with small mean and relatively large variance) for the
unknown parameters

by ~ N(u = 0, 0% = 100),
by ~ N(n = 0,0% = 100),
bix ~Nu=0,0>=100), j=1, k=12,
o ~ InvGamma(mean = 1, Var = 100)

vy ~ Uniform(—1, 1)

vy ~ Uniform(—1, 1)
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oﬁl ~ Uniform(0, 100)
0',?2 ~ Uniform(0, 100)

We also define the following prior distributions for the variance components of the
CAR priors (i.e., hyperparameters for the CAR priors)

rﬁ ~ InvGamma (mean = 1, Var = 100), p=0,1,2. (5)

Also, for the AR(1) models in (2) and (3), we need to define initial states, e o and e, g.
Thus, we assign the following prior distributions for these initial states

e ™~ N(O, ol

m

) (Old data; years 1905, ..., 1940)
€20~ N(0, 0”22) (New data; years 2001, ..., 2010).

Note that we have already defined prior distributions for the variance parameters (i.e.,
hyperparameters) 0”2] and 6”23_

The proposed hierarchical model implementation although not trivial can be conducted
based on the MCMC algorithm, and in particular, Gibbs sampling (Casella and George,
1992; Gelfand and Smith, 1990). We implement the model with a slight different for-
mulation for the threshold process model in OpenBUGS (http://www.openbugs.info/; see,
e.g., Congdon, 2010). In particular, we use an indicator variable notation to represent the
thresholding:

m; = by + po + (bo1 + 1 sp + 011X +e ) x (1 =1)+ (512X, +e,) x L, (6)
where I, = is a vector of indicator variables and is defined as

0 ifl <t <36 (years 1905-1940)

1 if37 <t <46 (years 2001-2010)

The algorithm was implemented for 100,000 iterations. We discarded the first 10,000
iteration for “burn-in” and based our inference on the remaining 90,000 iterations. The
MCMC algorithm achieved convergence rapidly within the first few thousand iterations.
Convergence was assessed using visual inspection, as well as autocorrelation of the MCMC
chains. Sample BUGS code is provided in Appendix A.

2.4 Model Selection

We consider several different models based on spatial and temporal structures in the models
and conduct model selection to investigate if the proposed model in the previous section
is appropriate. We use a common and easy to implement method for model selection for
hierarchical Bayesian models, the deviance information criterion (DIC). DIC was intro-
duced by Spiegelhalter et al. (2002) as a generalization of Akaike’s information criterion
(AIC). DIC is a penalized likelihood method based on the posterior distribution of the
deviance statistic. Based on the DIC criterion, models with relatively lower DIC values
indicate a better fit to the data compared with models with higher DIC values. DIC is
defined as

DIC = 2D — D(#@),
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Table 1
Model comparison results based on DIC and pp values
Model Pp DIC
Model 1 15.4 3,253
Model 2 8.7 3,274
Model 3 6.4 3,991
Model 4 3.0 3,987
Model 5 19.4 3,292
Model 6 21.91 3,302

where D is the posterior mean of the deviance, and D(0) is the deviance of the vector of
the posterior mean values for the model parameter vector ().
We consider six different models:

e Model 1: This is the model described in the previous section, which includes spatially
varying means and AR(1) error terms.

e Model 2: Similar to Model 1 but without the AR(1) error terms.

e Model 3: Similar to Model 1 but without spatially varying mean parameters.

e Model 4: This is the simplest model that assumes no spatially varying means and
AR(1) error terms.

e Model 5: Similar to Model 4 but a spatially varying common mean is included.

e Model 6: Similar to Model 4 but spatially varying parameters for Winter NAO are
included.

In the next section, we present model selection results and discuss results for the
selected preferred model.

3. Results

3.1 Model Selection Results

As discussed in the previous section, model selection was conducted based on DIC. DIC
results are provided in wTable 1. Based on DIC values Model 1 is the most preferred model.
The DIC for Model 2 is only slightly larger than the DIC for Model 1 and thus, Model 2
can be considered as good as Model 1 based on DIC. However, we decide to choose Model
1 as the “best” model as it accounts for temporal variability. Other models (Models 3-6)
are not considered as good as Models 1 and 2.

Table 2
Posterior results for the model parameters
Parameter Posterior mean Posterior st. dev. 95% Credible interval
bo 14.63 0.313 (—3.127, 32.53)
by 14.71 1.54 (11.8, 17.53)
by 20.28 5.25 (19.03, 39.34)

by —9.488 9.593 (—29.02, 8.744)
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Table 3
Posterior results for the overall difference in spatial means of the old and new data
{bﬂ.l +: ﬂl,sp)
Grid cell Posterior mean 95% Credible interval
1 17.94 (12.41, 23.55)
2 19.93 (14.25, 25.82)
3 17.09 (11.62,22.69)
4 20.21 (14.74, 26.05)
5 17.88 (12.62,23.51)
6 11.34 (5.754, 16.84)
7 14.75 (9.08,20.37)
8 9.995 (4.124, 15.52)
9 9.517 (3.814, 14.97)
10 8.475 (2.632, 14.22)

3.2 Model I Results

Model 1 results show significant changes in arrival dates of Purple Martins in recent years.
Table 2 shows the posterior inference for the regression parameters. Table 3 shows the
inference for the overall difference in total means for the new and old data (combined mean
effect of the constant and spatially varying means, bo,1 + g ).

Figure 2 shows the map of posterior means of differences between the new and old.
Figure 3 shows the map of posterior standard deviation of differences between the new
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Figure 2. Posterior means of the mean difference (constant and spatially varying; b + ft1.5p)
between the data for 1905-1940 and 2001-2010.
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Figure 3. Posterior standard deviations of the mean difference (constant and spatially varying;
bo,1 + pt1.sp) between the data for 1905-1940 and 2001-2010.

and old. Also, we have detected a significantly positive association between the Winter
NAO index and the mean arrival days for the old data (1905-1940). No significant effect
of Winter NAO was detected for the new data (see Table 2).

4. Conclusion and Discussion

Our model results show significant shifts in the mean arrival days of Purple Martins in the
study area (Table 3) with significantly earlier arrivals for the recent data compared with
the old data. However, the differences in arrival dates seem to be of higher magnitude in
South, East, Midwest, and part of Northeast of the United States and smaller (but still
statistically significant) in the Northern United States (including Great Lakes area; grid
cells 8-10; Table 3). For example, the mean difference in arrival dates for grid cell 10 is
statistically significantly smaller than the mean difference in arrival dates of grid cells 2 and
4. The detected decrease in mean arrivals over the recent years may be an indication of the
linkage between the recent changes in the climate and shifts in the Purple Martin migration
patterns. However, other factors such as potential differences in sampling efforts between
the two periods, changes in the population of Purple Martins, increase in bird houses, and
changes in the forestation/deforestation patterns and access to food resources may explain
the significant shifts in the migration patterns of Purple Martins between the two periods.
In particular, reforestation in the Northeast during the beginning of the 20th century and
increasing use of artificial martin houses may have increased martin populations during
this time, and may partially explain migratory advancements noted.

As mentioned in the previous section, we detected a significant effect of Winter NAO
for the old data but not for the new data. We suspect that this may be mainly due to low
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variability in the Winter NAO data for the recent data. Specifically, the 2000s Winter NAO
values are mostly negative with low variability (e.g., the standard deviation of Winter NAO
values for the old period is more than 2.5 times the standard deviation of the values for the
recent period). We did not find any evidence of spatially varying effect of Winter NAO; this
was explored in the model selection stage based on Model 6, which had a relatively high
DIC value compared to Modell.

As mentioned in the previous section, the inherent spatial latitudinal and longitudinal
structure highlights the importance of considering spatially varying mean parameters and
our results show that shifts in arrival patterns of Purple Martins are not constant over
space.

Potential future directions include analysis of multivariate spring arrival data for closely
related bird species, and characterization of the potential association between the changes
in the arrival dates and climate change. In this work, as an example, we used a climate index
(Winter NAO) as a predictor variable in the model. However, for a thorough investigation of
the link between changes in the climate and shifts in migration patterns, one should consider
other related weather variables (e.g., temperature, precipitation) and climate indices (e.g.,
North Pacific (NP); Atlantic Multi-decadal Oscillation (AMO); information on El Nifio and
La Nina seasons).

Also, another important future direction for this type of analysis includes accounting
for changes in bird populations. Although this is a difficult problem, reasonable estimates
of bird populations are available through long-term bird monitoring programs that often
use capture—recapture sampling to assess estimates of bird species populations, Thus,
the hierarchical Bayesian framework is a natural setting for combining bird arrival data
with estimates of bird populations to analyze the spatial-temporal response to climate
change.

Finally, the proposed approach presents a flexible tool with straightforward implemen-
tation for comparing bird arrival data from two different time periods. Given data availability
for more time periods, this modeling approach can be easily extended to include several
time periods. Alternatively, one could consider a “meta-population” approach and combine
data from different sources (i.e., different local and global monitoring programs) and from
different time periods to create a more comprehensive analysis of bird migration over the
last decades or even centuries. Again, the hierarchical Bayesian approach is ideal due to its
flexibility for combining data from several resources.
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Appendix A: BUGS Code

The code for implementing the model in OpenBUGS or WinBUGS is provided below:
model {

for {1 in* L+nyo

for (j in 1:T){ # T is the total number of years in the study; T=tl+t2
x[i,j]~dnorm(muli,j],tau)

mu[i,jl<-b[l]+sp[i]+spl[i]*(1-ind[j])+b[2]* (1~
ind[J])4+b[3]*WNAOL[1:t1]+b[4] *WNAO2 [t1+1:t2] +e[]]
# ind is an indicator wvariable (0 for period 1, and 1 for period 2)

# Priors for parameters

# CAR prior distribution for random effects:

sp[l:K] ~ car.normal(adj[], weights([], num[], tau)
spl[l:K] ~ car.normal(adj[], weights[], num[], taul)

for(k in l:sumNumNneigh ) {weights([k] <- 1}

# AR(1l) error processes
# initial state
e[l] ~ dnorm(0,tau.l)

# AR model

for (t in 2:tl){el[t] ~ dnorm{mu.e[t], tauel)
mu.e[t] <- rhl*e[t-1]}; tau.l <- (l-rhl*rhl)*tauel
sigl ~ dunif(0,100); tauel <- 1/(sigl*sigl);
s2el<-1/tauel

rhl ~ dunif(-1,1);

# initial state

e[tl+l] ~ dnorm(0,tau.2)

for (t in tl+2:t2){e[t] ~ dnorm(mu.e[t],taue2)
mu.e[t] <- rh2*e[t-1]}; tau.2 <- (l-rhZ2*rh2)*tauez
s5ig2 ~ dunif(0,100); taue2 <- 1/(sig2*sig2)
s2e2<-1/taue2

rh2 ~ dunif(-1,1)

# priors for variances
tau~dgamma{.01,.01)
taul~dgamma (.01, .01)

# priors for coefficients
for (i in 1:4){
b[i]~dnorm(0,.01)}

diffsp[i]l<-b[2]+spl[i]
for (i in 1l:n){diffsp[i]l<-spl[il-sp2[i]}}
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